PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 99 | 249-253
Article title

Propagators in quantum mechanics

Content
Title variants
Languages of publication
EN
Abstracts
EN
We consider one-dimensional non-relativistic quantum mechanics to exhibit that the propagators (Green’s functions) for free particle, linear potential and harmonic oscillator, are obtainable from purely classical means.
Discipline
Year
Volume
99
Pages
249-253
Physical description
Contributors
  • ESFM, Instituto Politécnico Nacional (IPN), Depto. Física, Edif. 9, Col. Lindavista 07738, CDMX, México
  • ESFM, Instituto Politécnico Nacional (IPN), Depto. Física, Edif. 9, Col. Lindavista 07738, CDMX, México
  • ESIME-Zacatenco, IPN, Edif. 4,1er. Piso, Col. Lindavista 07738, CDMX, México
  • ESIME-Zacatenco, IPN, Edif. 4,1er. Piso, Col. Lindavista 07738, CDMX, México
References
  • [1] D. Park, Introduction to the quantum theory, McGraw-Hill, New York (1992) Chap. 13.
  • [2] C. Lanczos, Linear differential operators, Dover, New York (1997).
  • [3] P. Dirac, The Lagrangian in quantum mechanics, Phys. Zeits. der Sowjetunion 3(1) (1933) 64-72.
  • [4] P. Dirac, The principles of quantum mechanics, Clarendon Press, Oxford, (1935).
  • [5] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20(2) (1948) 367-387.
  • [6] J. Mehra, Richard Phillips Feynman. 11 May 1918-15 Feb. 1988, Biogr. Mems. Fell. R. Soc. 48 (2002) 97-128.
  • [7] R. P. Feynman, A. R. Hibbs, D. F. Styer, Quantum mechanics and path integrals: Emended edition, Dover, New York (2010).
  • [8] M. Eckert, Arnold Sommerfeld. Science, Life and Turbulent Times 1868-1951, Springer, Berlin (2013).
  • [9] L. Beauregard, Propagators in nonrelativistic quantum mechanics, Am. J. Phys. 34(4) (1966) 324-332.
  • [10] L. S. Schulman, Techniques and applications of path integration, Wiley, New York (1981), Chap. 6.
  • [11] B. R. Holstein, Topics in advanced quantum mechanics, Addison-Wesley, New York (1992).
  • [12] D. C. Khandekar, S. V. Lawande, K. V. Bhagwat, Path-integral methods and their applications, World Scientific, Singapore (1993).
  • [13] E. F. Taylor, S. Vokos, J. O’Meara, Teaching Feynman’s sum-over-paths quantum theory, Computers in Phys. 12(2) (1998) 190-199.
  • [14] F. Chaos U., L. Chaos-Cador, E. Ley-Koo, Free-particle and harmonic-oscillator propagators in two and three dimensions, Revista Ciencias Exatas e Naturais 4(2) (2002) 145-149.
  • [15] G. Bouch, P. Bowers, Evaluating Feynman path integrals via the polynomial path family, Math. Phys. Electr. J. 13 (2007) 1-29.
  • [16] M. Moshinsky, E. Sadurni, A. del Campo, Alternative method for determining the Feynman propagator of a non-relativistic quantum mechanical problem, SIGMA 3 (2007) 110-121.
  • [17] B. R. Holstein, The linear potential propagator, Am. J. Phys. 65(5) (1997) 414-418.
  • [18] J. F. Donoghue, B. R. Holstein, The harmonic oscillator via functional techniques, Am. J. Phys. 56(3) (1988) 216-22.
  • [19] T. Alieva, On the self-fractional Fourier functions, J. Phys. A: Math. Gen. 29(15) (1996) L377-L379.
  • [20] S. Cohen, Path integral for the quantum harmonic oscillator using elementary methods, Am. J. Phys. 66(6) (1998) 537-540.
  • [21] B. R. Holstein, The harmonic oscillator propagator, Am. J. Phys. 66(7) (1998) 583-589.
  • [22] F. Barone, H. Boschi-Filho, C. Farina, Three methods for calculating the Feynman propagator, Am. J. Phys. 71(5) (2003) 483-491.
  • [23] L. Moriconi, An elementary derivation of the harmonic oscillator propagator, Am. J. Phys. 72(9) (2004) 1258-1259.
  • [24] E. Montroll, Markoff chains, Wiener integrals, and quantum theory, Commun. Pure Appl. Math. 5(4) (1952) 415-453.
  • [25] I. M. Gelfand, A. M. Yaglom, Integration in functional spaces and its applications in quantum physics, J. Math. Phys. 1(1) (1960) 48-69.
  • [26] E. Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys. 5(3) (1964) 332-343.
  • [27] N. Makri, Feynman path integration in quantum dynamics, Computer Phys. Comm. 63(1-3) (1991) 389-414.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a750c94c-5060-4e2f-a894-baffc8783e36
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.