PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 11 | 21-33
Article title

Do not let the dead bite! Different scenarios of the zombie epidemic reexamined

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Zombie Epidemic is a fun framework for investigating different scenarios of spreading disease. An extended Kermack – McKendrick model is analyzed. The only thing that can save humanity is to not get bitten or to find a remedy for the ”zombie virus” (both almost impossible).
References
  • Alemi A. A., Bierbaum M., Myers C. R., Sethna J. P., You Can Run, You Can Hide: The Epidemiology and Statistical Mechanics of Zombies, “Physical Review E” 2015, No. 92.
  • Booth W., Voodoo Science, “Science” 1988, No. 240.
  • Calderhead D., Girolami M., Higham D. J., Is It Safe to Go Out Yet? Statistical Inference in a Zombie Outbreak Model, “Department of Mathematics and Statistics Research Report” 2010, No. 6.
  • Crisite D., Lauro S. J., Better Off Dead: The Evolution of the Zombie as Post-Human, New York 2011.
  • Crossley M., Amos M., SimZombie: A Case-Study in Agent-Based Simulation Construction, “Agent and Multi-Agent Systems: Technologies and Applications Lecture Notes in Computer Science” 2011, No. 6682.
  • Edmonds E. B., Gonzalez M. A., Caribbean Religious History: An Introduction, New York 2010.
  • Kermack W. O., McKendrick A. G., A Contribution to the Mathematical Theory of Epidemics, “Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences” 1927, No. 115 (772).
  • List of Zombies Films, [Online] https://en.wikipedia.org/wiki/List_of_zombie_films [accessed: 8.12.2015].
  • Mogk M., Everything You Ever Wanted to Know About Zombies, New York 2011.
  • Munz P., Hudea I., Imad J., Smith R. J., When Zombies Attack!: Mathematical Modelling of An Outbreak of Zombie Infection, [in:] Infectious Disease Modelling Research Progress, eds. J. M. Tchuenche, C. Chiyaka, Ottawa 2011.
  • Smith T. C., Zombie Infections: Epidemiology, Treatment, and Prevention, “The British Medical Journal” 2015, No. 351:h6423, DOI: 10.1136/bmj.h6423.
  • Smith? R., Mathematical Modelling of Zombies, Ottawa 2013.
  • Teschl G., Ordinary Differential Equations and Dynamical Systems, “Graduate Studies in Mathematics” 2012, No. 140.
  • Wolfram Research, Inc., Mathematica, version 10.3, Champaign, IL (2015).
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-a74fca81-5d01-44e4-98ce-b2a00c504465
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.