PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 49 | 2 | 272-282
Article title

The Progression of Active Region with the Formation of Group and Complex Solar Radio Burst Type III on 31st August 2015

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this event, a solar radio burst in the range of 45-165 MHz with energy of 〖2.982 x 10〗^(-26) to 〖1.093 x 10〗^(-25) Joule with 0.8 MHz/ second have been correlated with the optical solar prominence. In combination of the optical, radio and X-ray observation, the occurrence of the event has been proposed. The active region of the prominence was AR2403. An individual type III burst was observed at 19:40 UT. The burst lasts for 15 minutes with a drift rate of 0.8 MHz/s. This burst was recorded by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) at Almaty Site. From 29th August 2015 onwards, the total magnetic flux increases gradually to over four-fold the initial value during development and levels off around 29th August 2015. It was found that B3 solar flare, followed by a slow coronal mass ejection (CME), is released from NOAA 2403 on 31st August 2015. The region is beyond -30 longitude at the time of the flare, making it impossible to reliably measure any magnetic properties involving gradients. The overall increase of Beff prior to the flare is indicative of an increase in polarity mixing within the AR, which has been shown to be related to flaring. Understanding of the exact nature of the initiation of these events is still incomplete.
Year
Volume
49
Issue
2
Pages
272-282
Physical description
Contributors
author
  • School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia, zetysh@salam.uitm.edu.my
author
  • School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
  • Kompleks Baitul Hilal Telok Kemang, Lot 4506 Batu 8, Jalan Pantai, 5, Tanjung Tanah Merah, 71050, Port Dickson, Negeri Sembilan, Malaysia
author
  • School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
author
  • School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
author
  • School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
author
  • School of Physics and Material Sciences, Faculty of Sciences, MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
  • Langkawi National Observatory, National Space Agency (ANGKASA), Empangan Bukit Malut 07000, Langkawi, Kedah, Malaysia
  • Langkawi National Observatory, National Space Agency (ANGKASA), Empangan Bukit Malut 07000, Langkawi, Kedah, Malaysia
author
  • Institute of Astronomy, Wolfgang-Pauli-Strasse 27, Building HIT, Floor J, CH-8093 Zurich, Switzerland
  • Academy of Contemporary Islamic Studies (ACIS), MARA University of Technology, 40450, Shah Alam, Selangor, Malaysia
References
  • [1] Goldman, M.V. and D.F. Smith, Physics of the Sun. Vol. 2. 1986: Dordrecht: Reidel.
  • [2] Gosling, J., J. Birn, and M. Hesse, Three‐dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophysical research letters, 1995. 22(8): p. 869-872.
  • [3] Howard, T.A., et al., Tracking halo coronal mass ejections from 0–1 AU and space weather forecasting using the Solar Mass Ejection Imager (SMEI). J. Geophys. Res., 2006. 111.
  • [4] Mei, Z., et al., Numerical experiments on magnetic reconnection in solar flare and coronal mass ejection current sheets. Monthly Notices of the Royal Astronomical Society, 2012. 425(4): p. 2824-2839.
  • [5] Nindos, A., et al., Observations and Models of a Flaring Loop. Astrophys. J., 2008. 533: p. 1053-1062.
  • [6] Hamidi, Z.S., et al., Solar Studies in Radio Emission and Optical Photometry, in Dimensi Penyelidikan Astronomi Islam. 2013, University of Malaya Publisher: University of Malaya. p. 33-40.
  • [7] Kim, I.S. and I. Alexeyeva. Magnetic Field Observations of Active Region Prominences , in Solar Active region Evolution: Comparing Models with Observations. 1994.
  • [8] Wild, J., S. Smerd, and A. Weiss, Solar bursts. Annual Review of Astronomy and Astrophysics, 1963. 1: p. 291.
  • [9] Hamidi, Z., et al., Theoretical Review of Solar Radio Burst III (SRBT III) Associated With of Solar Flare Phenomena. International Journal of Fundamental Physical Sciences, 2013. 3: p. 20-23.
  • [10] Hamidi, Z. and N. Shariff, The Propagation of An Impulsive Coronal Mass Ejections (CMEs) due to the High Solar Flares and Moreton Waves. International Letters of Chemistry, Physics and Astronomy, 2014. 14(1): p. 118.
  • [11] Hamidi, Z., N. Shariff, and C. Monstein, First Light Detection of A Single Solar Radio Burst Type III Due To Solar Flare Event. International Letters of Chemistry, Physics and Astronomy, 2014. 11(1): p. 51.
  • [12] McLean, D.J. and N.R. Labrum, Solar radiophysics: Studies of emission from the sun at metre wavelengths. 1985.
  • [13] Hamidi, Z.S., Probability of Solar Flares Turn Out to Form a Coronal Mass Ejections Events Due to the Characterization of Solar Radio Burst Type II and III. 2014: Scientific Publishing. p. 85.
  • [14] Hamidi, Z.S., et al., Dynamical structure of solar radio burst type III as evidence of energy of solar flares, in PERFIK 2012, R.Shukor, Editor. 2013, American Institute of Physics: Malaysia. p. 11-15.
  • [15] White, S.M., Solar radio bursts and space weather. Asian Journal of Physics, 2007, 16: p. 189-207.
  • [16] Dulk, G.A., Type III solar radio bursts at long wavelengths. Radio Astronomy at Long Wavelengths, 2000: p. 115-122.
  • [17] Hamidi, Z.S., Probability of Solar Flares Turn Out to Form a Coronal Mass Ejections Events Due to the Characterization of Solar Radio Burst Type II and III. International Letters of Chemistry, Physics and Astronomy, 2014. 16: p. 2.
  • [18] Melrose, D., On the theory of type II and type III solar radio bursts. II. Alternative model. Australian Journal of Physics, 1970. 23(5): p. 885-904.
  • [19] Melrose, D., A solar flare model based on magnetic reconnection between current-carrying loops. The Astrophysical Journal, 1997. 486(1): p. 521.
  • [20] Hamidi, Z., et al. Dynamical structure of solar radio burst type III as evidence of energy of solar flares. in American Institute of Physics Conference Series. 2013.
  • [21] Hamidi, Z., et al., The Beginning Impulsive of Solar Burst Type IV Radio Emission Detection Associated with M Type Solar Flare. International Journal of Fundamental Physical Sciences, 2012. 2: p. 32-34.
  • [22] Hamidi, Z., N. Shariff, and C. Monstein, An Observation of an Inverted Type U Solar Burst Due to AR1429 Active Region. International Letters of Chemistry, Physics and Astronomy, 2014. 10: p. 81.
  • [23] Hamidi, Z., et al., Signal Detection Performed by Log Periodic Dipole Antenna (LPDA) in Solar Monitoring. International Journal of Fundamental Physical Sciences, 2012. 2: p. 32-34.
  • [24] Hamidi, Z., et al., Combined Investigations of Solar Bursts Type III and V. International Journal of Fundamental Physical Sciencea, 2012. 2(3).
  • [25] Hamidia, Z., et al. Observations of coronal mass ejections (CMEs) at low frequency radio region on 15th April 2012. in AIP Conf. Proc. 2013.
  • [26] Monstein, C., R. Ramesh, and C. Kathiravan, Radio spectrum measurements at the Gauribidanur observatory. Bull. Astr. Soc. India, 2007. 35: p. 473-480.
  • [27] Benz, A.O., C. Monstein, and a.H. Meyer, Solar Phys., 2005. 226: 143-151.
  • [28] Z.S. Hamidi, N.N.M. Shariff, and C. Monstein, High Time Resolution Observation of Solar Radio of A Group Type III And U Burst Associated of Solar Flares Event. The International Journal of Engineering 2012, 1(1): p. 3.
  • [29] Benz, A.O., et al., The background corona near solar minimum. Solar Phys., 2004. 55: p. 121-134.
  • [30] Benz, A.O., et al., A broadband spectrometer for decimetric and microwave radio bursts first results. Sol. Phys., 1991. 133: p. 385-393.
  • [31] Messmer, P., A.O. Benz, and C. Monstein, PHOENIX-2: a new broadband spectrometer for decimetric and microwave radio bursts - first results.. Sol. Phys. , 1999. 187: p. 335-345.
  • [32] N. H. Zainol, Z. S. Hamidi, Nurulhazwani Husien, M. O. Ali, S. N. U. Sabri, N. N. M. Shariff, M. S. Faid, C. Monstein, Nabilah Ramli, World Scientific News 45(2) (2016) 80-91
  • [33] N. A. Norsham, Z. S. Hamidi, Muzamir Mazlan, N. N. M. Shariff, N. S. Yusofl, A. I. Jafni, N. M. F. Khalib, M. N. Hamdan, Farahana Kamaruddin, Muhammad Redzuan Tahar, C. Monstein, World Scientific News 45(2) (2016) 264-275
  • [34] N. S. Yusof, Z. S. Hamidi, N. A. Norsham, A. I. Jafni, N. M. Kahlid, M. N. Hamdan, Farahana Kamaruddin, Muhammad Redzuan Tahar, C. Monstein, N. N. M. Shariff, World Scientific News 46 (2016) 19-35
  • [35] Nurulhazwani Husien, Z. S. Hamidi, M. O. Ali, N. H. Zainol, S. N. U. Sabri, N. N. M. Shariff, M. S. Faid, Nabilah Ramli, C. Monstein, World Scientific News 46 (2016) 165-175
  • [36] Z. S. Hamidi, N. A. Norsham, Muzamir Mazlan, N. S. Yusof, A. I. Jafni, N. M. Kahlid, M. N. Hamdan, Farahana Kamaruddin, Muhammad Redzuan Tahar, C. Monstein, N. N. M. Shariff, World Scientific News 47(2) (2016) 230-240.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a69d2801-8cac-4545-9b52-15903bbeac79
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.