PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 155 | 113-128
Article title

Some results on centered triangular sum graphs

Content
Title variants
Languages of publication
EN
Abstracts
EN
A centered triangular sum labeling of a graph G is a one-to-one function f : V (G) → N ∪{0} that induces a bijection f *: E(G) →{B_1 〖,B〗_2,…B_q} of the edges of G defined by f * (uv) = f(u) + f(v), for all e = uv ∊ E(G). The graph which admits such labeling is called a centered triangular sum graph.
Year
Volume
155
Pages
113-128
Physical description
Contributors
author
  • P.G. & Research Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India
  • P.G. & Research Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India
  • P.G. & Research Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India
References
  • [1] M. Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second Edition, 1991.
  • [2] K. Amuthavalli and S. Dineshkumar. Some Polygonal Sum Labeling of Bistar, International Journal of Scientific and Research 5 (2016) 2229-5518
  • [3] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications, Macmillan Press, London (1976).
  • [4] David M. Burton, Elementary Number Theory (Second Edition), Wm. C. Brown Company Publishers, 1980.
  • [5] M. Ellingham. Sum Graphs from Trees. Ars Combinatoria, 35 (1993) 335-349
  • [6] J.A. Gallian. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 22 (2019) #DS6
  • [7] S.W. Golomb, How to number a Graph, Graph Theory and Computing, R.C. Read, Academic Press, New York (1972).
  • [8] F. Harary, Graph Theory, Adision – Wesley, Reading Mass, 1969.
  • [9] F. Harary, Sum Graphs and Difference Graphs. Congr. Numer. 72 (1990) 101-108
  • [10] F. Harary, I. R. Hentzel and D. Jacobs Digitizing Sum Graphs over the Reals, Caribbean J. Math. Comput. Sci. 1 (1991) 1-4
  • [11] F. Harary, Sum Graphs over all integers. Discrete Mathematics 124 (1994) 99-105
  • [12] S.M. Hegde and P. Shankaran , On triangular sum labeling of graphs, in Labeling of Discrete Structures and Applications, Narosa Publishing House, New Delhi, 2008, 109- 115
  • [13] P. Jeyanthi, R. Kalaiyarasi and D. Ramya, Centered Triangular Mean Graphs. International J. Math. Combin. 1 (2019) 126-133
  • [14] S. Murugesan, D. Jayaraman and J. Shiama, Centered triangular sum labeling of graphs. International Journal of Applied Information Systems 5(7) (2013) 1-4
  • [15] S. Murugesan, D. Jayaraman and J. Shiama, Some higher order triangular sum labeling of graphs. International Journal of Computer Applications 72(10) (2013) 1-8
  • [16] I. Niven and Herbert S. Zuckerman. An Introduction to the Theory of Numbers, Wiley Eastern Limited, Third Edition, 1991.
  • [17] K. R. Parthasarathy. Basic Graph Theory, Tata Mcgraw Hill Publishing Company Limited (1994).
  • [18] M. Prema and K. Murugan, Oblong sum labeling of some specjal graphs. World Scientific News 98 (2018) 12-22
  • [19] A. Rosa. On certain valuation of the vertices of a graph, Thoery of Graphs (Proc. Internat. Symposium, Rome, 1966), Gordon and Breach, N. Y and Dunod Paris (1967), 349-355.
  • [20] M. Seenivasan, A. Lourdusamy and M. Raviramasubramanian, Triangular mean labeling of graphs. Journal of Discrete Mathematical Sciences and Cryptography, 10(6) (2007) 815-822
  • [21] S. Somasundaram and R. Ponraj, Mean labelings of graphs. National Academy Science Letter, 26 (2003) 210-213
  • [22] S.K. Vaidya, U.M. Prajapati and P.L. Vihol, Some Important Result on Triangular Sum Graphs. Applied Mathematical and Science, 3, 36 (2009) 1763-1772
  • [23] M. Vanu Esakki, M. P. Syed Ali Nisaya. Two Modulo Three Sum Graphs. World Scientific News 145 (2020) 274-285
  • [24] M. Vanu Esakki and M. P. Syed Ali Nisaya, Some results on two modulo three sum graphs. Journal of Xidian University, 14(9) (2020) 1090-1099. https://doi.org/10.37896/jxu14.9/120
  • [25] D. Gunasekaran, K. Senbagam, R. Saranya, Labeling of 2-regular graphs by even edge magic. World Scientific News 135 (2019) 32-47
  • [26] G. Muppidathi Sundari & K. Murugan, Extra Skolem Difference Mean Labeling of Some Graphs. World Scientific News 145 (2020) 210-221
  • [27] G. Muthumanickavel, K. Murugan, Oblong Sum Labeling of Union of Some Graphs. World Scientific News, 145 (2020) 85-94
  • [28] N. Meena, M. Madhan Vignesh, Strong Efficient Co-Bondage Number of Some Graphs. World Scientific News 145 (2020) 234-244
  • [29] Theodore Molla, Michael Santana, Elyse Yeager, 2020. Disjoint cycles and chorded cycles in a graph with given minimum degree. Discrete Mathematics, Vol. 343, Issue. 6, p. 111837. https://doi.org/10.1016/j.disc.2020.111837
  • [30] Kostochka, Alexandr, Yager, Derrek, Yu, Gexin 2020. Discrete Mathematics and Applications Vol. 165, p. 259. https://doi.org/10.1007/978-3-030-55857-4_11
  • [31] Costalonga, J. P., Kingan, Robert J., Kingan, Sandra R. 2021. Constructing Minimally 3-Connected Graphs. Algorithms Vol. 14, Issue. 1, p. 9. https://doi.org/10.3390/a14010009
  • [32] Xiaojing Yang, Junfeng Du, Liming Xiong. Forbidden subgraphs for supereulerian and Hamiltonian graphs. Discrete Applied Mathematics Volume 288, 15 January 2021, Pages 192-200. https://doi.org/10.1016/j.dam.2020.08.034
  • [33] Chiba, Shuya, Yamashita, Tomoki, 2018. Degree Conditions for the Existence of Vertex-Disjoint Cycles and Paths: A Survey. Graphs and Combinatorics Vol. 34, Issue 1, p. 1. https://doi.org/10.1007/s00373-017-1873-5
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a4e129e6-1623-42db-ad54-32f9fb2ff37b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.