Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 54 | 26-37

Article title

Computer vision-based precision livestock farming: An overview of the challenges and opportunities

Content

Title variants

Languages of publication

EN

Abstracts

EN
ABSTRACT Different measures have been employed by livestock caretakers for the detection and monitoring of health and welfare status of their livestock. However, being performed manually has made the task a labor intensive, costly and time-consuming exercise. Various modern technologies have been explored by many studies to improve the livestock production, from among which computer vision has proven to be highly effective and efficient; nevertheless, a thorough investigation into the application of computer vision reveals noteworthy obstacles to embracing and implementing it in precision livestock farming such as cattle farming. Among the obstacles are 1) unavailability of reliable public cattle datasets and 2) lack of tested and trusted generalized methods/models employ in conducting research and experiment on new datasets. This paper presents an overview of the challenges and possible directions and future research opportunities of computer vision-based precision livestock farming.

Contributors

  • Department of Computer and Information Systems, Robert Morris University, Moon-Township, Pennsylvania, USA
  • Department of Mathematics and Computer Science, University of Africa, Toru-Orua, 561101 Sagbama, Bayelsa, Nigeria

References

  • [1] J. S. Afonso, M. Bruce, P. Keating, D. Raboisson, H. Clough, G. Oikonomou, J. Rushton, Profiling detection and classification of lameness methods in British dairy cattle research: a systematic review and meta-analysis. Frontiers in Veterinary Science 7 (2020) 542
  • [2] M. Alipio, M. L. Villena, M. L. Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health 27 (2023) 100369
  • [3] A. Bekuma, U. Galmessa, Review on hygienic milk products practice and occurrence of mastitis in cow’s milk. Agricultural Research & Technology: Open Access Journal 18(2) (2018) 1-11
  • [4] R. W. Bello, O. M. Moradeyo, Monitoring cattle grazing behavior and intrusion using global positioning system and virtual fencing. Asian Journal of Mathematical Sciences 3(4) (2020) 4-14
  • [5] R. W. Bello, A. S. A. Mohamed, A. Z. Talib, Contour extraction of individual cattle from an image using enhanced Mask R-CNN instance segmentation method. IEEE Access 9 (2021a) 56984-57000.
  • [6] R. W. Bello, A. S. A. Mohamed, A. Z. Talib, D. A. Olubummo, O. C. Enuma, Computer vision-based techniques for cow object recognition. In IOP Conference Series: Earth and Environmental Science IOP Publishing 858(1) (2021b) 012008
  • [7] R. W. Bello, A. S. A. Mohamed, A. Z. Talib, S. Sani, M. N. Ab Wahab, Behavior recognition of group-ranched cattle from video sequences using deep learning. Indian Journal of Animal Research 56(4) (2022) 505-512
  • [8] R. W. Bello, O. M. Moradeyo, Features-based individual cattle instance identification method using hybrid deep learning models for sustainable livestock management. World Scientific News 180 (2023) 119-131
  • [9] R. W. Bello, M. A. Oladipo, Mask YOLOv7-based drone vision system for automated cattle detection and counting. Artificial Intelligence and Applications (2024) https://doi.org/10.47852/bonviewAIA42021603
  • [10] D. Berckmans, General introduction to precision livestock farming. Animal Frontiers 7(1) (2017) 6-11
  • [11] D. Bogueva, M. Marques, C. F. M. Molento, D. Marinova, C. J. Phillips, Will the cows and chickens come home? Perspectives of Australian and Brazilian beef and poultry farmers towards diversification. Sustainability 15(16) (2023) 12380
  • [12] L. Carpentier, D. Berckmans, A. Youssef, D. Berckmans, T. van Waterschoot, D. Johnston, ... T. Norton, Automatic cough detection for bovine respiratory disease in a calf house. Biosystems Engineering 173 (2018) 45-56
  • [13] P. Chamberlain, Welfare and health challenges of ‘new entry’ dairying: a Practitioner’s perspective. In Cattle Welfare in Dairy and Beef Systems: A New Approach to Global Issues Cham: Springer International Publishing (2023) (pp. 433-466)
  • [14] J. M. Chapa, K. Maschat, M. Iwersen, J. Baumgartner, M. Drillich, Accelerometer systems as tools for health and welfare assessment in cattle and pigs–a review. Behavioural Processes 181 (2020) 104262
  • [15] S. De Alwis, Z. Hou, Y. Zhang, M. H. Na, B. Ofoghi, A. Sajjanhar, A survey on smart farming data, applications and techniques. Computers in Industry 138 (2022) 103624
  • [16] A. De Vries, M. I. Marcondes, Overview of factors affecting productive lifespan of dairy cows. Animal 14(S1) (2020) s155-s164
  • [17] M. M. Dos Santos, J. B. F. Souza-Junior, M. R. T. Dantas, L. L. de Macedo Costa, An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environmental Science and Pollution Research 28(24) (2021) 30471-30485
  • [18] D. Dutta, D. Natta, S. Mandal, N. Ghosh, MOOnitor: An IoT based multi-sensory intelligent device for cattle activity monitoring. Sensors and Actuators A: Physical 333 (2022) 113271
  • [19] K. J. Dutton-Regester, T. S. Barnes, J. D. Wright, J. I. Alawneh, A. R. Rabiee, A systematic review of tests for the detection and diagnosis of foot lesions causing lameness in dairy cows. Preventive Veterinary Medicine 149 (2018) 53-66
  • [20] I. Halachmi, M. Guarino, J. Bewley, M. Pastell, Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences 7 (2019) 403-425
  • [21] M. F. Hansen, M. L. Smith, L. N. Smith, K. A. Jabbar, D. Forbes, Automated monitoring of dairy cow body condition, mobility and weight using a single 3D video capture device. Computers in Industry 98 (2018) 14-22
  • [22] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (2017) (pp. 2961-2969)
  • [23] M. K. Kallioniemi, H. R. Kymäläinen, J. K. Niemi, Enabling factors and constraints for the adoption of animal welfare-enhancing technologies among Finnish dairy farmers. Frontiers in Animal Science 5 (2024) 1332525.
  • [24] S. G. Kamchen, E. F. Dos Santos, L. B. Lopes, L. G. Vendrusculo, I. C. Condotta, Application of depth sensor to estimate body mass and morphometric assessment in Nellore heifers. Livestock Science 245 (2021) 104442
  • [25] A. Kamilaris, F. X. Prenafeta-Boldú, A review of the use of convolutional neural networks in agriculture. The Journal of Agricultural Science 156(3) (2018) 312-322.
  • [26] M. S. Kannadhasan, M. Kathirchelvan, R. Rajendran, Identification and prioritization of constraints in Umblachery breed cattle farming through participatory approach. International Journal of Current Microbiology and Applied Sciences 7 (11) (2018) 1100-1110
  • [27] F. Kidanemariam, H. Fesseha, Assessment on livestock production: Opportunities and challenges to livestock household in Welkayt District. Archives of Animal Husbandry & Dairy Science 2(1) (2020) 1-8. DOI: 10.33552/AAHDS.2020.02.000530
  • [28] D. Kim, W. S. Kwon, J. Ha, J. Moon, J. Yi, Increased accuracy of estrus prediction using ruminoreticular biocapsule sensors in Hanwoo (Bos taurus coreanae) cows. Journal of Animal Science and Technology 65(4) (2023) 759
  • [29] M. Lee, S. Seo, Wearable wireless biosensor technology for monitoring cattle: A review. Animals 11(10) (2021) 2779
  • [30] J. Li, A. R. Green-Miller, X. Hu, A. Lucic, M. M. Mohan, R. N. Dilger, ... N. Ahuja, Barriers to computer vision applications in pig production facilities. Computers and Electronics in Agriculture 200 (2022) 107227
  • [31] Z. Li, R. Guo, M. Li, Y. Chen, G. Li, A review of computer vision technologies for plant phenotyping. Computers and Electronics in Agriculture 176 (2020) 105672
  • [32] B. Petrović, R. Bumbálek, T. Zoubek, R. Kuneš, L. Smutný, P. Bartoš, Application of precision agriculture technologies in Central Europe-review. Journal of Agriculture and Food Research (2024) 101048
  • [33] I. Poulopoulou, C. Lambertz, M. Gauly, Are automated sensors a reliable tool to estimate behavioural activities in grazing beef cattle?. Applied Animal Behaviour Science 216 (2019) 1-5
  • [34] Y. Qiao, D. Su, H. Kong, S. Sukkarieh, S. Lomax, C. Clark, Data augmentation for deep learning-based cattle segmentation in precision livestock farming. In 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) (2020, August) (pp. 979-984). IEEE
  • [35] S. Z. Ramanoon, M. B. Sadiq, W. M. Shaik Mossadeq, R. Mansor, S. S. Syed-Hussain, The impact of lameness on dairy cattle welfare: Growing need for objective methods of detecting lame cows and assessment of associated pain. Anim. Welf (2018) 51-72
  • [36] C. Rojo-Gimeno, M. van der Voort, J. K. Niemi, L. Lauwers, A. R. Kristensen, E. Wauters, Assessment of the value of information of precision livestock farming: A conceptual framework. NJAS-Wageningen Journal of Life Sciences 90 (2019) 100311
  • [37] J. Sahu, A. Yadav, O. P. Dinani, T. Kumari, A. Dubey, R. Gadpayle, Role of dairy farming to double the farmer’s income by 2025. International Journal of Advances in Agricultural Science and Technology 6(2) (2019) 1-10
  • [38] K. B. Savalia, A. R. Ahlawat, V. V. Gamit, S. S. Parikh, A. D. Verma, Recently recognized indigenous cattle breeds of India: A review. International Journal of Current Microbiology and Applied Sciences 8(12) (2019) 161-168
  • [39] W. Shao, R. Kawakami, R. Yoshihashi, S. You, H. Kawase, T. Naemura, Cattle detection and counting in UAV images based on convolutional neural networks. International Journal of Remote Sensing 41(1) (2020) 31-52
  • [40] J. M. Siegford, K. Wurtz, Practical considerations for the use of precision livestock farming to improve animal welfare. In Bridging Research Disciplines to Advance Animal Welfare Science: A Practical Guide GB: CABI (2021) (pp. 241-265).
  • [41] P. Tassinari, M. Bovo, S. Benni, S. Franzoni, M. Poggi, L. M. E. Mammi, ... D. Torreggiani, A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. Computers and Electronics in Agriculture 182 (2021) 106030
  • [42] O. D. S. Teixeira, L. B. Pereira, A. M. Fernandes, A. L. Fantinel, Technological advances in cattle welfare: An analysis of patent families. Revista Brasileira de Saúde e Produção Animal 21 (2020) e2121222020
  • [43] J. Wang, J. Li, F. Wang, J. Xiao, Y. Wang, H. Yang, ... Z. Cao, Heat stress on calves and heifers: a review. Journal of Animal Science and Biotechnology 11 (2020) 1-8
  • [44] D. Wu, X. Yin, B. Jiang, M. Jiang, Z. Li, H. Song, Detection of the respiratory rate of standing cows by combining the Deeplab V3+ semantic segmentation model with the phase-based video magnification algorithm. Biosystems Engineering 192 (2020) 72-89

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-a2f94264-0849-434b-ab6f-12f7af7084e5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.