PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 106 | 238-244
Article title

On the Faddeev-Sominsky’s algorithm

Content
Title variants
Languages of publication
EN
Abstracts
EN
We comment that the Faddeev-Sominsky’s process to obtain an inverse matrix is equivalent to the Cayley-Hamilton-Frobenius theorem plus the Leverrier-Takeno’s method to construct the characteristic polynomial of an arbitrary matrix. Besides, we deduce the Lanczos expression for the resolvent of the corresponding matrix.
Year
Volume
106
Pages
238-244
Physical description
Contributors
  • Escuela de Ingeniería Eléctrica y Electrónica, Universidad de Tarapacá, Arica, Casilla 6-D, Chile
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
References
  • C. Lanczos, Applied analysis, Dover, New York (1988).
  • L. Hogben, Handbook of linear algebra, Chapman & Hall / CRC Press, London (2006).
  • A. K. Hazra, Matrix: Algebra, calculus and generalized inverse, Cambridge Int. Sci. Pub. (2006).
  • H. Wayland, Expansion of determinantal equations into polynomial form, Quart. Appl. Math. 2 (1945) 277-306.
  • A. S. Householder, F. L. Bauer, On certain methods for expanding the characteristic polynomial, Numerische Math. 1 (1959) 29-37.
  • J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford (1965).
  • D. Lovelock, H. Rund, Tensors, differential forms, and variational principles, John Wiley and Sons, New York (1975).
  • U. J. J. Leverrier, Sur les variations séculaires des éléments elliptiques des sept planétes principales, J. de Math. Pures Appl. Série 1, 5 (1840) 220-254.
  • A. N. Krylov, On the numerical solution of the equation, that in technical problems, determines the small oscillation frequencies of material systems, Bull. de l’Acad. Sci. URSS 7(4) (1931) 491-539.
  • H. Takeno, A theorem concerning the characteristic equation of the matrix of a tensor of the second order, Tensor NS 3 (1954) 119-122.
  • E. B. Wilson, J. C. Decius, P. C. Cross, Molecular vibrations, Dover, New York (1980) 216-217.
  • I. Guerrero-Moreno, J. López-Bonilla, J. Rivera-Rebolledo, Leverrier-Takeno coefficients for the characteristic polynomial of a matrix, J. Inst. Eng. (Nepal) 8(1-2) (2011) 255-258.
  • D. K. Faddeev, I. S. Sominsky, Collection of problems on higher algebra, Moscow (1949).
  • V. N. Faddeeva, Computational methods of linear algebra, Dover, New York (1959) Chap. 3.
  • D. K. Faddeev, Methods in linear algebra, W. H. Freeman, San Francisco, USA (1963).
  • J. H. Caltenco, J. López-Bonilla, R. Peña-Rivero, Characteristic polynomial of A and Faddeev’s method for A-1, Educatia Matematica 3(1-2) (2007) 107-112.
  • L. S. Brown, Quantum field theory, Cambridge University Press (1994).
  • T. L. Curtright, D. B. Fairlie, A Galileon primer, arXiv: 1212.6972v1 [hep-th] 31 Dec. 2012.
  • J. C. Gower, A modified Leverrier-Faddeev algorithm for matrices with multiple eigenvalues, Linear Algebra and its Applications 31(1) (1980) 61-70.
  • B. Hanzon, R. Peeters, Computer algebra in systems theory, Dutch Institute of Systems and Control, Course Program 1999-2000.
  • R. Cruz-Santiago, J. López-Bonilla, S. Vidal-Beltrán, On eigenvectors associated to a multiple eigenvalue, World Scientific News 100 (2018) 248-253.
  • C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. of Res. Nat. Bureau Stand. 45(4) (1950) 255-282.
  • Shui-Hung Hou, On the Leverrier-Faddeev algorithm, Electronic Proc. of Asia Tech. Conf. in Maths. (1998).
  • Shui-Hung Hou, A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm, SIAM Rev. 40(3) (1998) 706-709.
  • J. López-Bonilla, D. Romero-Jiménez, A. Zaldívar-Sandoval, Laplace transform of matrix exponential function, Prespacetime Journal 6(12) (2015) 1410-1413.
  • Ch. A. McCarthy, The Cayley-Hamilton theorem, Amer. Math. Monthly 8(4) (1975) 390-391.
  • J. Riordan, Combinatorial identities, John Wiley and Sons, New York (1968).
  • L. Comtet, Advanced combinatorics, D. Reidel Pub., Dordrecht, Holland (1974).
  • D. A. Zave, A series expansion involving the harmonic numbers, Inform. Process. Lett. 5(3) (1976) 75-77.
  • X. Chen, W. Chu, The Gauss (_2^)F_1 (1)-summation theorem and harmonic number identities, Integral Transforms and Special Functions 20(12) (2009) 925-935.
  • [31] J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore (2016).
  • W. P. Johnson, The curious history of Faà di Bruno’s formula, The Math. Assoc. of America 109 (2002) 217-234.
  • J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Bell polynomials, Prespacetime 9(5) (2018) 451-453.
  • J. López-Bonilla, S. Vidal-Beltrán, A. Zúñiga-Segundo, Characteristic equation of a matrix via Bell polynomials, Asia Mathematika 2(2) (2018) to appear.
  • J. J. Sylvester, On the equation to the secular inequalities in the planetary theory, Phil. Mag. 16 (1883) 267-269.
  • A. Buchheim, On the theory of matrices, Proc. London Math. Soc. 16 (1884) 63-82.
  • N. J. Higham, Functions of matrices: Theory and computation, SIAM, Philadelphia, USA (2008).
  • N. J. Higham, Sylvester’s influence on applied mathematics, Maths. Today 50(4) (2014) 202-206.
  • A. Buchheim, An extension of a theorem of Professor Sylvester’s relating to matrices, The London, Edinburgh, and Dublin Phil. Mag. And J. of Sci. 22(135) (1886) 173-174.
  • J. López-Bonilla, J. Morales, G. Ovando, E. Ramírez, Leverrier-Faddeev’s algorithm applied to spacetimes of class one, Proc. Pakistan Acad. Sci. 43(1) (2006) 47-50.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-a0e88b9e-4496-461d-8951-1c778abf44b6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.