Preferences help
enabled [disable] Abstract
Number of results
2014 | 5 | 52-71
Article title

Pytania o kwarc deformacyjny i szokowy

Title variants
Questions about deformed and shocked quartz
Languages of publication
Quartz, known as a common mineral on our planet, is used as a good marker of microstructural deformation created by tectonic activity or meteorite impact. Planar fractures (PFs) and planar deformation features (PDFs) are not randomly oriented in an impacted quartz crystal, but are distinctly connected to crystallographic planes. In a tectonically deformed quartz PDFs are mostly parallel to the plane (0001), but can also be bent. Recrystallization reduces the level of dislocations in such a quartz. However, the difference between both types of quartz is quantitative and not qualitative. One might expect that the impact could reactivate or induce new tectonic metamorphism and/or volcanic activity. In addition, P-T parameters decrease continuously from the impact centre toward outside. Then, intermediate forms of quartz deformation ought to be distinguished. The paper also presents the point of view that the location and identification of deformed and shocked quartz, as well as some allochtonic Scandinavian impactites, transported into the Central Europe during the last glaciation, is highly probable in areas of enhanced tectonic activity in Lower Silesia, Poland. Identification of local rocks with pseudotachylite properties and recognition of their nature, deformed versus shocked, could also be helpful here.
Physical description
  • Alexopoulos J., Grieve R.A.F., Robertson P.B., 1987. Microscopic lamellar deformation features in quartz from different geologic environments, Lunar and Planetary Science Conference XXVIII, s. 19–20.
  • Bolewski A., Parachoniak W., 1982. Petrografia, Wydawnictwa Geologiczne, Warszawa.
  • Borkowska M., Smulikowski K., 1973. Minerały skałotwórcze, Wydawnictwa Geologiczne, Warszawa.
  • Czajka W. 2004. Struktura Podlesie – Czy w Polsce znajduje się wielki krater uderzeniowy? Przegląd Geologiczny 52, s. 229–232.
  • Dadlez R., Jaroszewski W., 1994. Tektonika. Wydawnictwo Naukowe PWN, Warszawa.
  • Engelhardt W.V., Bertsch W., 1969. Shock induced planar deformation structures in quartz from the Ries crater, Germany, Contr. Mineral. and Petrol. 20, s. 203–234.
  • Ferričre L., Morrow J.R., Amgaa T., Koeberl C., 2009. Systematic study of universal-stage measurements of planar deformation features in shocked quartz: implications for statistical significance and representation of results, Meteoritics & Planetary Science 44, s. 925–940.
  • Friedlaender C.G.I., 1981. Quartz group. W: K. Frye (Ed.) The encyclopedia of mineralogy. Encyclopedia of Earth Sciences, Vol. IVB, s. 99–105, Hutchinson Ross Publishing Company, Stroudsburg (wyd. rosyjskie).
  • Gratz A.J., Fisler D.K., Bohor B.F., 1996. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching, Earth and Planetary Science Letters 142, s. 513–521.
  • Grieve R.A.F., Therriault A.M., 1995. Planar deformation features in quartz: target effects, Lunar and Planetary Science Conference XXVI, s. 515–516.
  • Ivanov B.A., Melosh H.J., 2003. Impacts do not initiate volcanic eruptions: eruptions close to the crater, Geology 31, s. 869–872.
  • Jones A.P., Price G.D., Price N.J., DeCarli P.S., Clegg R.A., 2002. Impact induced melting and the development of large igneus provinces, Earth and Planetary Science Letters 202, s. 551–561.
  • Liu Z.H., Xu Y., Wang K.Y., 2007. Evidence of microstructures and fluid inclusions for the origin of polycristalline quartz ribbons in high-grade metamorphic rocks in Daqingshan region, Science in China Series D: Earth Sciences 50, s. 496–504.
  • Langenhorst F., Deutsch A., 1993. Orientation of planar deformation features (PDFs) in quartz, Lunar and Planetary Science Conference XXIV, s. 849–850.
  • Majerowicz A., 2006. Krótki przewodnik terenowy po skałach ofiolitowego zespołu Ślęży oraz ich petrologicznej i geologicznej historii, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.
  • Manecki A., Parachoniak W., 2008. Budowa wewnętrzna skał metamorficznych – struktury i tekstury, W: A. Manecki, M. Muszyński (Wyd.) Przewodnik do petrografii, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, s. 456–480.
  • Mazur S., Puziewicz J., 1995. Mylonity strefy Niemczy, Annales Societatis Geologorum Poloniae 64, s. 23–52.
  • Melosh H.J., 2005. The mechanics of pseudotachylite formation in impact events, W: C. Koeberl, H. Henkel (Eds.) Impact tectonics, Springer, Berlin, s. 55–80.
  • Norton O.R., Chitwood L.A., 2007. Szok w ziemskich strukturach uderzeniowych, Meteoryt 4 (64), s. 14–16.
  • Passchier C.W., Trouw R.A.J., 2005. Microtectonics, Springer, Berlin.
  • Przybylski B., Badura J., 2004. Czy struktury koliste w Sudetach mogą mieć genezę uderzeniową? Przegląd Geologiczny 52: 971–978.
  • Reimold W.U., 1998. Exogenic and endogenic breccias: a discussion of major problematics, Earth-Science Reviews 43, s. 25–47.
  • Reimold W.U., Gibson R.L., 2005. “Pseudotachylites” in large impact structures, W: C. Koeberl, H. Henkel (Eds.) Impact tectonics. Springer, Berlin, s. 1–53.
  • Stöffler D., 1966. Zones of impact metamorphism in the crystalline rocks of the Nördlinger Ries crater, Contr. Mineral. and Petrol. 12, s. 15–24.
  • Trepmann C.A., 2008. Shock effects in quartz: compression versus shear deformation – an example from the Rochechouart impact structure, France, Earth and Planetary Science Letters 267, s. 322–332.
  • Trepmann C.A., 2009. Shock effects and pre-shock microstructures in hydrothermal quartz veins from the Rochechouart impact structure, France, Journal of Structural Geology 31, s. 183–196.
  • Trepmann C.A., Spray J.G., 2004. Post-shock crystal-plastic processes in quartz from crystalline target rocks of the Charlevoix impact structure, Lunar and Planetary Science XXXV, abstract no. 1730
  • Trouw R.A.J., Passchier C.W., Wiersma D.J., 2010. Atlas of mylonites- and related microstructures, Springer, Heidelberg.
  • Voorn M.H., 2010. A new way to confirm meteorite impact produced planar features in quartz: combining Universal Stage and Electron Backscatter Diffraction techniques, MSc Thesis, Utrecht University, s. 1–46.
  • Voorn M.H., Hamers M.F., Drury M.R., 2010. Comparison of orientation measurements of planar deformation features and tectonic deformation lamellae in quartz, Meteoritics and Planetary Science Supplement, id.5017.
  • Wenk H.-R., Janssen C., Kenkmann T., Dresen G., 2011. Mechanical twinning in quartz: shock experiments, impact, pseudotachylites and fault breccias, Tectonophysics 510, s. 69–79.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.