PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 67 | 3 | 184–193
Article title

Temperature and concentration dependence of translational diffusion coefficient for human serum albumin in aqueous solutions at different pH

Authors
Content
Title variants
PL
Zależność współczynnika dyfuzji translacyjnej od temperatury i stężenia dla albuminy surowicy ludzkiej w roztworach wodnych przy różnych wartościach pH
Languages of publication
EN
Abstracts
EN
B A C K G R O U N D The aim of the present paper is to investigate the temperature and concentration dependence of the translational diffusion coefficient for human serum albumin in aqueous solutions at neutral pH and at the isoelectric point. M A T E R I A L A N D M E T H O D S The viscosity of human serum albumin aqueous solutions at pH 4.7 and 7.0 was measured at temperatures ranging from 5oC to 45oC and in a wide range of con-centrations. The measurements were performed with an Ubbelohde-type capillary microviscometer. R E S U L T S The translational diffusion coefficient of a protein in infinitely dilute solutions Do(T) can be calculated from the generalized Stokes-Einstein equation if the hydrodynamic radius of the studied protein is known. For hydrated human serum albumin, this equation gives Do(T) in the range of 3.45 x 10-11 m2/s (at 5oC) to 10.0 x 10-11 m2/s (at 45oC). The translational diffusion coefficient for higher concentrations of D(T,F) can be obtained from the relation: D(T,F) = Do(T)ho(T)/h(T,F), where F denotes the volume fraction and ho(T) and h(T, F) are the viscosities of water and the solution at temperature T, respectively. C O N C L U S I O N S The translational diffusion coefficient of human serum albumin in solutions both at pH 4.7 and 7.0 decreases linearly with increasing volume fraction, when  does not exceed the value of about 0.11. The dependence of the translational diffusion coefficient on volume fraction in the whole measured range of is non-linear and can be described by a stretched exponential function. The scaling parameters in this function are different at different values of pH. The dependence of the translational diffusion coefficient on temperature, in turn, can be described by the three-parameter Vogel-Tammann-Fulcher’s equation.
PL
W S T Ę P Celem niniejszej pracy jest zbadanie zależności współczynnika dyfuzji translacyjnej od temperatury i ułamka objętościowego dla albuminy surowicy ludzkiej w roztworach wodnych przy neutralnym pH oraz w punkcie izoelektrycznym. M A T E R I A Ł I M E T O D Y Lepkość wodnych roztworów albuminy surowicy ludzkie j przy pH 4,7 i 7,0 zmierzono w zakresie temperatur 5–45 o C i w szerokim zakresie stężeń. Pomiary wykonano za pomocą kapilarnego mikrowiskozymetru typu Ubbe-lohde’a. W Y N I K I Współczynnik dyfuzji translacyjnej białka dla roztworów rozcieńczonych D o (T) można obliczyć z uogólnionego równania Stokesa-Einsteina, jeżeli znany jest promień hydrodynamiczny badanego białka. Dla uwodnionej albuminy surowicy ludzkiej równanie to daje D o (T) w zakresie od 3,45 ¥ 10 -11 m 2 /s (w 5 o C) do 10,0 ¥ 10 -11 m 2 /s (w 45 o C). Współczynnik dyfuzji translacyjnej dla wyższych stężeń D(T, F ) można otrzymać z relacji: D(T, F ) = D o (T) h o (T)/ h (T, F ), w której F oznacza ułamek objętościowy a h o (T) i h (T, F ) to lepkości, odpowiednio, wody i roztworu w temperaturze T. W N I O S K I Współczynnik dyfuzji translacyjnej albuminy surowicy ludzkiej w roztworach wodnych zarówno przy pH 4,7 jak i 7,0 maleje liniowo wraz ze wzrostem ułamka objętościowego, jeżeli F nie przekracza wartości około 0,11. Zależność współczynnika dyfuzji translacyjnej od ułamka objętościowego w całym mierzonym zakresie F jest nieliniowa i można ją opisać rozciągniętą funkcją wykładniczą. Parametry skalowania w tej funkcji są różne przy różnych wartościach pH. Z kolei zależność współczynnika dyfuzji translacyjnej od temperatury może być opisana przez trójparametryczne równanie Vogela-Tammanna-Fulchera.
Discipline
Year
Volume
67
Issue
3
Pages
184–193
Physical description
References
  • 1. He X.M., Carter D.C. Atomic structure and chemistry of human serum albumin. Nature 1992; 358: 209–215.
  • 2. Gelamo E.L., Silva C.H.T.P., Imasato H., Tabak M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modeling. Biochim. Biophys. Acta 2002; 1594: 84–99.
  • 3. Amiri M., Jankeje K., Albani J.R. Characterization of human serum albumin forms with pH. Fluorescence lifetime studies. J. Pharm. Biomed. Anal. 2010; 51: 1097–1102.
  • 4. Otosu T., Nishimoto E., Yamashita S. Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy. J. Biochem. 2010; 147: 191–200.
  • 5. Chilom C.G., Barangӑ G., Gӑzdaru D.M., Popescu A. A spectroscopic approach of pH effect on thermal denaturation of human and bovine serum albumins. J. Optoeletr. Adv. Materials 2011; 13: 583–587.
  • 6. Monkos K. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim. Biophys. Acta 2004; 1700: 27–34.
  • 7. Peters T. Jr. All about albumin. Biochemistry, genetics, and medical applications, in: Peters T. (Ed.), Metabolism: albumin in the body, 1996; Academic Press Limited, pp. 188–250.
  • 8. Cluzel P., Surette M., Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000; 287: 1652–1655.
  • 9. Macnab R. Action at a distance: bacterial flagellar assembly. Science 2000; 290: 2086–2087.
  • 10. Berry H. Monte Carlo simulations of enzyme reactions in two dimen-sions: fractal kinetics and spatial segregation. Biophys. J. 2002; 83: 1891–1901.
  • 11. Crick F. Diffusion in embryogenesis. Nature 1970; 225: 420–422.
  • 12. Gros G., Moll W. Facilitated diffusion of CO2 across albumin solutions. J. Gen. Physiol. 1974; 64: 356–371.
  • 13. Banks D.S., Fradin C. Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 2005; 89: 2960–2971.
  • 14. Lavalette D., Hink M.A., Tourbez M., Tétreau C., Visser A.J. Proteins as micro viscosimeters: Brownian motion revisited. Eur. Biophys. J. 2006; 35: 517–522.
  • 15. Goins A.B., Sanabria H., Waxham M.N. Macromolecular crowding and size effects on probe microviscosity. Biophys. J. 2008; 95: 5362–5373.
  • 16. Saluja A., Badkar A.V., Zeng D.L., Nema S., Kalonia S.D. Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements. Biophys. J. 2007; 92: 234–244.
  • 17. Nesmelova I.V., Skirda V.D., Fedotov V.D. Generalized concentration dependence of globular protein self-diffusion coefficients in aqueous solu-tions. Biopolymers 2002; 63: 132–140.
  • 18. Lau E.Y., Krishnan V.V. Temperature dependence of protein-hydration hydrodynamics by molecular dynamics simulations. Biophys. Chem. 2007; 130: 55–64.
  • 19. Rampp M., Buttersack C., Lüdemann H-D. c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions. Carbohydr. Res. 2000; 328: 561–572.
  • 20. Jin S., Verkman A.S. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena. J. Phys. Chem. B 2007; 111: 3625–3632.
  • 21. Verkman A.S. Diffusion in cells measured by fluorescence recovery after photobleaching. Method Enzymol. 2003; 360: 635–648.
  • 22. Gros G. Concentration dependence of the self-diffusion of human and lumricus terrestris hemoglobin. Biophys. J. 1978; 22: 453–468.
  • 23. Young M.E., Carroad P.A., Bell R.L. Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 1980; 22: 947–955.
  • 24. Tyn M.T., Gusek T.D. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng. 1990; 35: 327–338.
  • 25. He L., Niemeyer B. A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration. Biotechnol. Prog. 2003; 19: 544–548.
  • 26. Banachowicz E., Gapiński J., Patkowski A. Solution structure of biopolymers: a New metod of constructing a bead model. Biophys. J. 2000; 78: 70–78.
  • 27. Garcia de la Torre J., Huertas M.L., Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 2000; 78: 719–730.
  • 28. Aragon S., Hahn D.K. Precise boundary element computation of protein transport properties: diffusion tensors, specific volume, and hydration. Biophys. J. 2006; 91: 1591–1603.
  • 29. Vlasova I.M., Bukharova E.M., Kuleshova A.A., Saletsky A.M. Spectroscopic investigations of interaction of fluorescent nanomarkers of fluorescein family with human serum albumin at different values of pH. Cur. Appl. Phys. 2011; 11: 1126–1132.
  • 30. Miller I., Gemeiner M. An electrophoretic study on interactions of albumins of different species with immobilized Cibacron Blue F3G A. Electrophoresis 1998; 19: 2506–2514.
  • 31. Einstein A. Investigations on the theory of the Brovnian movement. 1956; Dover Publications, New York, pp. 122.
  • 32. Landau L.D., Lifshitz E.M. Fluid Mechanics 1959; Pergamon, Oxford.
  • 33. Perrin F. Mouvement Brownien d’un ellipsoide. II. Rotation libre de depolarization des fluorescence: Translation et diffusion de molecules ellipsoidales. J. Physique Radium 1936; 7: 1–11.
  • 34. Jachimska B., Wasilewska M., Adamczyk Z. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 2008; 24: 6866–6872.
  • 35. Aragon S., Hahn D.K. Precise boundary element computation of protein transport properties: diffusion tensors, specific volume, and hydration. Biophys. J. 2006; 91: 1591–1603.
  • 36. Hahn D.K., Aragon S.R. Intrinsic viscosity of proteins and platonic solids by boundary element methods. J. Chem. Theory Comput. 2006; 2: 1416–1428.
  • 37. Ando T., Skolnick J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Sci. USA 2010; 107: 18457–18462.
  • 38. Roosen-Runge F., Hennig M., Zhang F., Jacobs R.M.J., Sztucki M., Schober H., Seydel T., Schreiber F. Protein self-diffusion in crowded solutions. Proc. Natl. Acad. Sci. USA 2011; 108: 11815–11820.
  • 39. Wang J.H., Anfinsen C.B., Polestra F.M. The self-diffusion coefficiens of water and ovalbumin in aqueous ovalbumin solutions at 10oC. J. Am. Chem. Soc. 1954; 76: 4763–4765.
  • 40. Brown W., Stilbs P. Self-diffusion measurements on bovine serum albumin solutions and gels using a pulsed-gradient spin-echo NMR technique. Chemica Scripta 1982; 19: 161–163.
  • 41. 41 Han J., Herzfeld J. Macromolecular diffusion in crowded solutions. Biophys. J. 1993; 65: 1155–1161.
  • 42. Xia J., Aerts T., Donceel K., Clauwaert J. Light scattering by bovine α-crystallin proteins in solution: hydrodynamic structure and interparticle interaction. Biophys. J. 1994; 66: 861–872.
  • 43. Dockal M., Carter D.C., Rüker F. The three recombinant domains of human serum albumin. J. Biol. Chem. 1999; 274: 29303–29310.
  • 44. Baranowska H.M., Olszewski K.J. The hydration of proteins in solutions by self-diffusion coefficients NMR study. Biochim. Biophys. Acta 1996; 1289: 312–314.
  • 45. Dwyer J.D., Bloomfield V.A. Brownian dynamics simulations of probe and self-diffusion in concentrated protein and DNA solutions. Biophys. J. 1993; 65: 1810–1816.
  • 46. Monkos K. Determination of the translational diffusion coefficient for proteins from the Stokes-Einstein equation and viscometric measurements, in: Drzazga Z., Ślosarek K (Eds), Some aspects of medical physics – in vivo and in vitro studies, 2010; Vol. 1: Series of monographs, Pol. J. Environ. Stud., pp. 83–89.
  • 47. Monkos K. A comparative study on translational diffusion coefficient for some mammalian serum albumins. Ann. Acad. Med. Siles. 2010; 64: 43–53.
  • 48. Rampp M., Buttersack C., Lüdemann H-D. c, T-dependence of the viscosity and self-diffusion coefficients in some aqueous carbohydrate solutions. Carbohydr. Res. 2000; 328: 562–572.
  • 49. Lau E.Y., Krishnan V.V. Temperature dependence of protein-hydration hydrodynamics by molecular dynamics simulations. Biophys. Chem. 2007; 130: 55–64.
  • 50. Angell C.A. Perspective on the glass transition. J. Phys. Chem. Solids 1988; 8: 863–871.
  • 51. Monkos K. c,T – dependence of the translational diffusion coefficient for hen egg-white lysozyme in aqueous solutions obtained from viscosity meas-urements and generalized Stokes-Einstein relation. Curr. Top. Biophys. 2009; 32: 1–9.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-9f9fa8f7-22c5-4769-96e6-022cafcc123d
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.