Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2022 | 164 | 77-107

Article title

Delineation of Geothermal Energy Potentials in Parts of Calabar Flank, Southeastern Nigeria Using Aeromagnetic Data


Title variants

Languages of publication



In tackling energy-related challenges in Nigeria; the exploration of an alternative source of energy (Geothermal Energy) comes to the limelight as it is generated below the earth subsurface. This work focuses on the delineation of geothermal energy potentials in parts of Calabar Flank, in southeastern Nigeria using Aeromagnetic Data. The aim is to understand the geothermal energy potentials and structural of parts of the Calabar flank by studying the various geothermal, geological, and structural parameters using Aeromagnetic Data. The methodologies applied are quantitative for structural analysis and qualitative using spectral analysis and 3D Euler Deconvolution. The study area lies between within Latitude 5°30ʹ00ʺ N - 6°30ʹ00ʺN and Longitude 7°30ʹ00ʺE - 8°30ʹ0ʺE respectively. Results from the 3D Euler analysis revealed the depth range of 0.25 Km to 4.018 Km. the spectral Analysis revealed a depth range of Magnetic source (Zt) is (-)0.564 Km to (-)0.828 Km, the Zo is (-)4.261 Km to (-)5.999 Km and the average depth to basement thickness is (-)4.825 Km. The Curie Point Depth, Geothermal Gradient, and Heat flow yield an average depth of (-)9.452 Km, a value of 61.893 °CKm-1, and 154.983 mWm-2 from the Spectral Analysis. Some structural features such as trending faults, and fractured basements was observed at the NE-SW of the study area and this correlated to the relatively high heat flow and geothermal gradient at the NNE-SSW part is associated with thermal structures, mineralogical and tectonic history from the NE-SW trending fault in the study area is suitable for geothermal energy exploitation.






Physical description


  • Department of Geological Sciences, Faculty of Physical Sciences, Nnamdi Azikiwe University, Along Enugu-Onitsha Expressway, Ifite Road, 420110, Awka, Anambra State, Nigeria
  • Department of Geological Sciences, Faculty of Physical Sciences, Nnamdi Azikiwe University, Along Enugu-Onitsha Expressway, Ifite Road, 420110, Awka, Anambra State, Nigeria


  • [1] E. M. Abdelrahman, and K. S. Essa, A new method for depth and shape determinations from magnetic data. Pure and Applied Geophysics 172(2) (2015) 439-460
  • [2] M. Abdullahi, R. Kumar, U. K. Singh, Magnetic basement depth from high-resolution aeromagnetic data of parts of lower and middle Benue Trough (Nigeria) using scaling spectral method. J Afr Earth Sci 150(1) (2019b) 337-345
  • [3] E. M. Abraham, and E. E. Nkitnam, Review of geothermal energy research in Nigeria: The geoscience front. International Journal of Earth Science and Geophysics 3(1) (2017) 1-5
  • [4] Abraham, E. M., Itumoh, O., Chukwu, C. and Rock, O, (2018). Geothermal Energy Reconnaissance of Southeastern Nigeria from Analysis of Aeromagnetic and Gravity Data Pure Applied Geophysics, 1645(1), 351-362.
  • [5] C. A. Adighije, Gravity interpretation of the Benue Trough, Nigeria. Tectonophysics 79 (1981) 109-128
  • [6] O. K. Agagu, C. I. Adighije, Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria. Journal of Africa Earth Sci 1(3/4) (1983) 267-274
  • [7] C. O. Ajayi, D. E. Ajakaiye, The origin and perculiarities of the Nigerian Benue Trough: another look from recent gravity data obtained from middle Benue. Tectonophysics 80 (1981) 285-303
  • [8] E. Anakwuba, and A. Chinwuko. Re-Evaluation of Hydrocarbon Potentials of Eastern Part of the Chad Basin, Nigeria: An Aeromagnetic Approach. Search and Discovery Article no.10405; Journal of American Association of Petroleum Geologist, Annual Convention and Exhibition, Long Beach, California, United States of America, June 2012, 1-12
  • [9] G. K. Anudu, R. A. Stephenson and D. M. Macdonald, Using high-resolution aeromagnetic data to recognize and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria. J Afr Earth Sci 99: (2014)1–12.
  • [10] A. Avbovbo, Geothermal gradients in the Southern Nigerian basins. Bull Can Petrol Geol 26(2) (1978) 268-274
  • [11] A. R. Bansal, G. Gabriel, V. P. Dimri, and C. M. Krawczyk, Estimation of the depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76: (2011) 11–22.
  • [12] R. Bello, C. C. Ofoha, and N. Wehiuzo, Geothermal Gradient, Curie Point Depth and Heat Flow Determination of Some Parts of Lower Benue Trough and Anambra Basin, Nigeria, Using High Resolution Aeromagnetic Data. Physical Science International Journal 15(2) (2017) 1-11
  • [13] J. Benkhelil, Benue trough and Benue chain. Geol Mag 119 (1982) 155-168
  • [14] J. Benkhelil, The origin and evolution of the Cretaceous Benue Trough (Nigeria). J Afr Earth Sci 6 (1989) 251-282
  • [15] K. Bhattacharyya, and L. K. Leu, Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie Point isothermal surface for geothermal reconnaissance. J Geophys Res 80 (1975) 4461-4465
  • [16] R. J. Blakely, Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. J Geophys Res 93: (1988) 11817-11832
  • [17] R. J. Blakely, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, New York (1995).
  • [18] J. D. Carter, W. Barber, E. A. Tait, G. P. Jones, The geology of parts of Adamawa, Bauchi and Bornu Provinces in northeastern Nigeria. Bull Geol Soc Nigeria 30 (1963) 109-118
  • [19] G. Chukwu, E. E. Udensi, E. M. Abraham, A. C. Ekwe, and A. O. Selemo, Geothermal Energy Potential from Analysis of Aeromagnetic Data of Parts of Niger-Delta Basin, Southern Nigeria. Physical Geology, 143(2) (2017) 846-853
  • [20] Chukwuka, Integrated Landsat ETM and Aeromagnetic Survey for enhanced structural and geothermal interpretation of part of Calabar Flank. Unpubl. Thesis, (2016), 113p.
  • [21] G.Connard, R. Couch, and M. Gemperle, Analysis of aeromagnetic measurements from the Cascade Range in the Central Oregon. Geophysics 48(1) (1983) 376-390
  • [22] C. R. Cratchley, and G. P. Jones, An interpretation of the geology and gravity anomalies of the Benue Valley Nigeria. Oversea Geological Survey London. Geophysics (1965) 1p.
  • [23] R.Dipippo, and J. L. Renner, Geothermal energy. In Future Energy (2014) 471-492
  • [24] A. J. Ilozobhie, D. A. Obi, A. M. George, A. M. Asuquo, and I. Yahaya,.Determination of Thermal Conductivity of Some Shale Samples in Awi Formation and Its Geophysical Implications, Cross River State, Nigeria. Journal of Environmental and Earth Science 6(8) (2016) 102-111
  • [25] S. Kasidi, and A. Nur, Estimation of Curie Point Depth, Heat flow and Geothermal Gradient Inferred from Aeromagnetic Data over Jalingo and Environs North – Eastern Nigeria. International Journal of Earth Science and Engineering, 6(6) (2013) 294-301
  • [26] Miller, H. G. and V. Singh, Potential Field Tilt-A New Concept for Location of Potential Field Sources: Journal of Applied Geophysics, 32 (1994) 213-217
  • [27] S. O. Nwachukwu, Approximate geothermal gradients in the Niger Delta sedimentary basins: Assoc Pet Geol 60(7) (1976) 1073-1077
  • [28] C. S. Nwajide, Geology of Nigeria sedimentary basins. CSS Press, Nigeria. (2013).
  • [29] L. I. Nwankwo, and M. K. Shehu, Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin Nigeria. Geothermics 54(1) (2015) 76-81
  • [30] N. G. Obaje, Geology and mineral resources of Nigeria. Springer, Dordrecht, (2009) 221.
  • [31] C. F. Odumodu, Temperatures and Geothermal gradient fields in the Calabar Flank and parts of the Niger Delta, Nigeria. Petroleum Technology Journal, 2(2) (2012) 156-163
  • [32] C. O. Ofoegbu, Interpretation of aeromagnetic anomalies over Lower and Middle Benue Trough of Nigeria. Geophys J R Astron Soc 79 (1984) 813-823
  • [33] J. K. Ogunmola, E. A. Ayolabi, and S. B. Olobaniyi, Structural-depth analysis of the Yola Arm of the Upper Benue Trough of Nigeria using high resolution aeromagnetic data. J Afr Earth Sci 124 (2016) 32-43
  • [34] A. Oha, K. M. Onuoha, A. N. Nwegbu, and A. U. Abba, Interpretation of high-resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria. J Earth Syst Sci 125 (2016) 369-385
  • [35] Y. Okubo, R. J. Graf, R. O. Hansen, K. Ogawa, and H. Tsu, Curie point depths of the island of Kyushu and surrounding area, Japan. Geophysics 50 (1985) 481-489
  • [36] L. N. Onuba, A. G. Onwumesi, B. C. Egboka, G. K. Anudu, and A. A. Omali, Review of Hydrocarbon Prospects in The Lower Benue Trough, Nigeria: Another Insight from Potential Filed Study. Adopted from extended abstract at AAPG Annual Convention and Exhibition, Pittsburgh Pennsylvania, May 19-22, 2013
  • [37] M. Onuoha, and A. S. Ekine, Subsurface temperature variations and heat flow in the Anambra basin, Nigeria. J Afr Earth Sci 28(3) (1999) 641-652
  • [38] A. I. Opara, S. O. Oneyekuru, E. C. Mbagwu, T. T. Emberga, K. C. Ijeomah, and K. C. Nwokocha, Integrating Landsat – ETM and Aeromagnetic Data for Enhanced Structural Interpretation over Naraguta Area, North-Central Nigeria. International J. of Scientific and Engineering Research, 6(9) (2015) 10
  • [39] S. W. Peters, C.S. Okereke, and C. S. Nwajide, Geology of the Mamfe Rifts, Southeastern Nigeria (1987).
  • [40] T. J. D. Reijers Sequence stratigraphy based on microfacies analysis. Mfamosing Limestone, Calabar Flank, Nigeria. Geologicen Mibouw 76 (1996) 197-215
  • [41] I. Selim, and E. Aboud, Application of spectral analysis technique on ground magnetic data to calculate the Curie depth point of the eastern shore of the Gulf of Suez, Egypt. Arabian Journal of Geosciences, 7 (2014) 1749-1762
  • [42] A. Spector, and F. S. Grant Statistical model for interpreting aeromagnetic data. Geophysics 35 (1970) 293-302
  • [43] Tanaka, Y. Okubo, and O. Matsubayashi Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306 (1999) 461-470
  • [44] B. Thurston, and R. S. Smith, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. Geophysics, 62 (1997) 807-813
  • [45] D. L. Turcotte, and G. Schubert, Geodynamics: Applications of continuum physics to geological problems. Cambridge University Press, New York, (1982) 450.
  • [46] J. B. Wright, Origins of the Benue Trough—a critical reviews. In: Kogbe CA (ed) Geology of Nigeria. Elizabethan Publication Co., Lagos, (1976) 313-318

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.