Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2016 | 3 | 1 | 38-44

Article title

Chirurgia refrakcyjna rogówki – przegląd technologii laserowych i metod

Content

Title variants

EN
Corneal refractive surgery – overview of laser technologies and methods

Languages of publication

PL

Abstracts

PL
Laserowa chirurgia refrakcyjna wykorzystująca technologię lasera ekscymerowego i/lub femtosekundowego jest chirurgią rogówki zmieniającą jej krzywiznę przednią i korygującą w ten sposób wady refrakcji. W artykule przedstawiono po krótce pierwsze techniki refrakcyjne w obrębie rogówki, a następnie charakterystykę technologii laserowych. Ponadto dokonano przeglądu obecnie stosowanych laserowych metod korekcji wad wzroku.
EN
Laser refractive surgery, using excimer and/or femto laser technology is surgery of the cornea, correcting refractive errors by changing its anterior curvature. The article presents briefly the first corneal refractive methods, then the characteristics of laser technology and an overview of the currently used methods of laser vision correction.

Discipline

Publisher

Journal

Year

Volume

3

Issue

1

Pages

38-44

Physical description

Contributors

  • Klinika Okulistyczna Optegra w Warszawie
  • Klinika Okulistyczna Optegra we Wrocławiu
  • Klinika Okulistyczna Optegra w Warszawie; Klinika Okulistyki, Wojskowy Instytut Medyczny w Warszawie

References

  • 1. Frederic DR. Myopia. BMJ 2002; 324: 1195-1199.
  • 2. Saw SM, Katz J, Schein OD, et al. Epidemiology of myopia. Epid Rev 1996; 18: 175-187.
  • 3. Dandona R, Dandona L. Refractive error blindness. Bull World Health Organ 2001; 79: 237-243.
  • 4. Fyodorov SN, Durnev VV. Operation of dosaged dissection of corneal circular ligament in cases of myopia of mild degree. Ann Ophthalmol 1979; 11: 1885-1890.
  • 5. Waring GO III, Lynn MJ, McDonnell PJ, et al. Results of the prospective evaluation of radial keratotomy (PERK) study 10 years after surgery. Arch Ophthalmol 1994; 112: 1298-1308.
  • 6. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol 1983; 96: 710-715.
  • 7. Seiler T, Bende T, Wollensak J, Trokel SL. Excimer laser keratectomy for correction of astigmatism. Am J Ophthalmol 1988; 105: 117-124.
  • 8. Kochevar IE. Cytotoxicity and mutagenicity of excimer laser radiation. Lasers Surg Med 1989; 9: 440-445.
  • 9. Schalhorn SC, Farjo AA, Huang D, et al. Wavefront-guided LASIK for the correction of primary myopia and astigmatism. A report by the American Academy of Ophthalmology. Ophthalmology 2008; 115: 1249-1261.
  • 10. Chalita MR, Chavala S, Xu M, et al. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology 2004; 111: 447-453.
  • 11. Durrie DS. First 100 CustomCornea commercial eyes. J Refract Surg 2003; 19: S687-S690.
  • 12. Mrochen M, Kaemmerer M, Seiler T. Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg 2001; 27: 201-207.
  • 13. Lingmin HE, Liu A, Manche EE. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis for patients with myopia: A prospective randomized contralateral eye study. Am J Ophthalmol 2014; 157: 1170-1178.
  • 14. Applegate RA, Howland HC. Refractive surgery, optical aberrations and visual performance. J Refract Surg 1997; 13: 295-299.
  • 15. Aktunc R, Aktunc T. Centration of excimer laser photorefractive keratectomy and changes in astigmatism. J Refract Surg 1996; 12: S268-S271.
  • 16. Taylor NM, Eikelboom RH, van Sarloos PP, Reid PG. Determining the accuracy of an eye tracking system for laser refractive surgery. J Refract Surg 2000; 16: S643-S646.
  • 17. El Bahrawy M, Alió JL. Excimer laser 6(th) generation: state of the art and refractive surgical outcomes. Eye Vis (Lond) 2015; 2: 6.
  • 18. Arbelaez MC, Vidal C, Arba-Mosquera S. Excimer laser correction of moderate to high astigmatism with a non-wavefront- -guided aberration-free ablation profile: Six-month results. J Cataract Refract Surg 2009; 35: 1789-1798.
  • 19. Vega-Estrada A, Alió JL, Arba Mosquera S, et al. Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap. J Refract Surg 2012; 28: 689-696.
  • 20. Lubatschowski H, Maatz G, Heisterkamp A, et al. Application of ultrashort laser pulses for intrastromal refractive surgery. Graefes Arch Clin Exp Ophthalmol 2000; 238: 33-39.
  • 21. Juhasz T, Loesel FH, Kurtz RM, et al. Corneal refractive surgery with femtosecond lasers. IEEE J Select Topics Quantum Electron 1999; 5: 902-910.
  • 22. Montés-Micó R, Rodríguez-Galietero A, Alió JL. Femtosecond laser versus mechanical keratome LASIK for myopia. Ophthalmology 2007; 114: 62-68.
  • 23. Lee JB, Choe CM, Kim HS, et al. Comparison of TGF-β1 in tears following laser subepithelial keratomileusis and photorefractive keratectomy. J Refract Surg 2002; 18: 130-134.
  • 24. Gamaly TO, El Danasoury A, El Maghraby A. A prospective, randomized, contralateral eye comparison of epithelial laser in situ keratomileusis and photorefractive keratectomy in eyes prone to haze. J Refract Surg 2007; 23(suppl): 1015-1020.
  • 25. Taneri S, Oehler S, Koch J, et al. Effect of repositioning or discarding the epithelial flap in laser-assisted subepithelial keratectomy and epithelial laser in situ keratomileusis. J Cataract Refract Surg 2011; 37: 1832-1846.
  • 26. Choi SK, Kim JH, Lee D, et al. Different epithelial cleavage planes produced by various epikeratomes in epithelial laser in situ keratomileusis. J Cataract Refract Surg 2008; 34: 2079-2084.
  • 27. Pallikaris IG, Naoumidi II, Kalyvianaki MI, et al. Epi-LASIK: comparative histological evaluation of mechanical and alcohol-assisted epithelial separation. J Cataract Refract Surg 2003; 29: 1496-1501.
  • 28. Buzzonetti L, Petrocelli G, Laborante A, et al. A new transepithelial phototherapeutic keratectomy mode using the NIDEK CXIII excimer laser. J Refract Surg 2009; 25: S122-S124.
  • 29. Pallikaris IG, Papatzanaki ME, Stathi EZ, et al. Laser in situ keratomileusis. Lasers Surg Med 1990; 10: 463-468.
  • 30. Davison JA, Johnson SC. Intraoperative complications of LASIK flaps using the IntraLase femtosecond laser in 3009 cases. J Refract Surg 2010; 26: 851-857.
  • 31. Chaurasia SS, Luengo Gimeno F, Tan K, et al. In vivo real-time intraocular pressure variations during LASIK flap creation. Invest Ophthalmol Vis Sci 2010; 51: 4641-4645.
  • 32. Tanna M, Schallhorn SC, Hettinger KA. Femtosecond laser versus mechanical microkeratome: a retrospective comparison of visual outcomes at 3 months. J Refract Surg 2009; 25(7 suppl): S668-S671.
  • 33. Wilson SE. Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy. Ophthalmology 2001; 108: 1082- -1087.
  • 34. Ambrósio R Jr, Tervo T, Wilson SE. LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment. J Refract Surg 2008; 24: 396-407.
  • 35. Salomão MQ, Ambrósio R Jr, Wilson SE. Dry eye associated with laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser. J Cataract Refract Surg 2009; 35: 1756-1760.
  • 36. Rosa AM, Neto Murta J, Quadrado MJ, et al. Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness. J Cataract Refract Surg 2009; 35: 833-838.
  • 37. Moshirfar M, McCaughey MV, Reinstein DZ, et al. Small-incision lenticule extraction. J Cataract Refract Surg 2015; 41: 652-665.
  • 38. Lin F, Xu Y, Yang Y. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia. J Refract Surg 2014; 30: 248-254.
  • 39. Ganesh S, Gupta R. Comparison of visual and refractive outcomes following femtosecond laser-assisted lasik with SMILE in patients with myopia or myopic astigmatism. J Refract Surg 2014; 30: 590-596.
  • 40. Ang M, Chaurasia SS, Angunawela RI. Femtosecond lenticule extraction (FLEx): clinical results, interface evaluation, and intraocular pressure variation. Invest Ophthalmol Vis Sci 2012; 53: 1414-1421.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-9f194b75-d502-4f2c-83f4-7582067dc7ab
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.