PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 18 | 4 | 388–398
Article title

Wybrane czynniki ryzyka schizofrenii: pomiędzy różnorodnością modeli etiologicznych a psychiatrią spersonalizowaną

Content
Title variants
EN
Selected risk factors for schizophrenia: between the diversity of aetiological models and personalised psychiatry
Languages of publication
PL
Abstracts
EN
Schizophrenia is a very serious and growing medical and social problem. Despite advances in pharmacotherapy and other forms of psychosis therapy, schizophrenia remains a chronic and degrading disorder. Several decades of research on the determinants of schizophrenia brought no insight into its aetiology. Hypotheses confirmed in the studies and verified in clinical practice either fail to account for the causes of schizophrenia or explain only some of its manifestations. The well-known and widely described models of impaired dopaminergic (the dopamine hypothesis) or serotonergic neurotransmission, which provide foundations for the contemporary pharmacotherapy, may serve as an example. However, such an intervention does not interfere with the mechanisms underlying the disease, but only eliminates some of the symptoms, with no effects on cognitive deficits. Studies on risk factors for schizophrenia, its first episode in particular, increasingly emphasise the importance of interactions between immunological dysregulation, oxidant-antioxidant imbalance, disturbances of the intestinal barrier and epigenetic phenomena. This fact points to the need to modify the classical metaconcept of the development of schizophrenia by adding the aspect of interaction between a range of diverse biological and psychosocial phenomena. There are many individual observations in the subject literature, however, studies exploring the relationships between immunological and inflammatory phenomena, gene expression and the dynamics of changes in the clinical condition in the course of treatment are lacking. The presented etiopathogenetic mechanisms of the disease are a potential goal of future research strategies, which may additionally reinforce both the more personalised approach and the potential of combined therapies.
PL
Schizofrenia należy do coraz poważniejszych problemów medycznych i społecznych. Pomimo postępu w farmakoterapii i innych formach terapii psychoz pozostaje ona zaburzeniem o chronicznym i degradującym przebiegu. Kilka dekad badań nad jej uwarunkowaniami nie przyniosło odkrycia etiologii choroby. Potwierdzone w badaniach i zweryfikowane w praktyce klinicznej hipotezy nie tłumaczą przyczyn jej powstawania lub ograniczają się do wyjaśnienia tylko części manifestowanych objawów. Przykładem mogą być szeroko znane i opisane modele zaburzenia neurotransmisji dopaminergicznej (teoria dopaminowa) czy serotoninergicznej, na których opiera się współczesna farmakoterapia. Jest to jednak interwencja nie ingerująca w mechanizmy powstawania choroby, lecz tylko usuwająca część objawów, bez wpływu na deficyty poznawcze. Coraz częściej w badaniach nad czynnikami ryzyka schizofrenii – w tym zwłaszcza jej pierwszego epizodu – podnosi się znaczenie interakcji między dysregulacją immunologiczną, zaburzeniami równowagi oksydacyjno-antyoksydacyjnej, zakłóceniami bariery jelitowej oraz zjawiskami o charakterze epigenetycznym. Fakt ten wskazuje na konieczność zmodyfikowania klasycznych metakoncepcji nt. rozwoju schizofrenii o wymiar oddziaływania pomiędzy szeregiem różnorodnych zjawisk biologicznych a zjawiskami psychospołecznymi. W literaturze przedmiotu znaleźć można wiele pojedynczych obserwacji, brakuje jednak przekrojowych badań, w których sprawdzano by zależności między zjawiskami immunologicznymi i zapalnymi, ekspresją genów a dynamiką zmian stanu klinicznego w przebiegu leczenia. Przedstawione w tekście mechanizmy etiopatogenezy choroby stanowią potencjalny cel przyszłych strategii badawczych, które dodatkowo powinny wzmacniać podejście spersonalizowane i potencjał terapii skojarzonych.
Discipline
Publisher

Year
Volume
18
Issue
4
Pages
388–398
Physical description
Contributors
  • Klinika Psychiatrii Dorosłych, Dzieci i Młodzieży, Szpital Uniwersytecki w Krakowie, Katedra Psychiatrii, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska, nataliasmierciak30@gmail.com
  • Zakład Diagnostyki Medycznej, Wydział Farmaceutyczny, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska
author
  • Klinika Psychiatrii Dorosłych, Dzieci i Młodzieży, Szpital Uniwersytecki w Krakowie, Katedra Psychiatrii, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska
  • Zakład Wstępnych Badań Farmakologicznych, Katedra Farmakodynamiki, Wydział Farmaceutyczny, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska
  • Klinika Psychiatrii Dorosłych, Dzieci i Młodzieży, Szpital Uniwersytecki w Krakowie, Katedra Psychiatrii, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska
author
  • Zakład Diagnostyki Obrazowej Centrum Urazowego Medycyny Ratunkowej iKatastrof, Szpital Uniwersytecki w Krakowie, Katedra Radiologii, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska
  • Klinika Psychiatrii Dorosłych, Dzieci i Młodzieży, Szpital Uniwersytecki w Krakowie, Katedra Psychiatrii, Uniwersytet Jagielloński – Collegium Medicum, Kraków, Polska
References
  • Abbott A, Roberts BM, Turner L et al.: Inhibition of kynurenine aminotransferase II (KAT II) protects against ketamine-induced cognitive impairment and improves spatial working memory. Soc Neurosci Abstr 2010; 35: 472.18.
  • Bai ZL, Li XS, Chen GY et al.: Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J Mol Neurosci 2018. DOI: 10.1007/s12031-018-1165-4.
  • Bannerman DM, Yee BK, Good MA et al.: Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 1999; 113: 1170–1188.
  • Baruk H: [Digestive and hepatointestinal etiology of the various mental diseases]. Schweiz Med Wochenschr 1953; 83 (Suppl): 1517–1518.
  • Baruk H, Camus L: [Biliary & hepatic poisons in pathogenesis of schizophrenia; experimental study]. Confin Neurol 1958, 18: 254–263.
  • Baruk H, Fabiani P: [Study of blood ammonia in periodic psychosis and in the epileptic state. Psychotoxic value of certain digestive disorders therapeutic trials]. Ann Med Psychol (Paris) 1962; 120: 721–726.
  • Bian Q, Kato T, Monji A et al.: The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 42–48.
  • Bohórquez DV, Liddle RA: The gut connectome: making sense of what you eat. J Clin Invest 2015; 125: 888–890.
  • Bohórquez DV, Shahid RA, Erdmann A et al.: Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 2015; 125: 782–786.
  • Brito-Melo GE, Nicolato R, de Oliveira AC et al.: Increase in dopaminergic, but not serotoninergic, receptors in T-cells as a marker for schizophrenia severity. J Psychiatr Res 2012; 46: 738–742.
  • Brown AS, Cohen P, Harkavy-Friedman J et al.: A.E. Bennett Research Award. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry 2001; 49: 473–486.
  • Brown AS, Schaefer CA, Quesenberry CP Jr et al.: Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 2005; 162: 767–773.
  • Burokas A, Moloney RD, Arboleya S et al.: Targeting the microbiotagut-brain axis with prebiotics in mice: a novel strategy for stressrelated disorders. Poster Session Presented at 45th Annual Meeting for Society for Neuroscience, Neuroscience 2015, October 17–21, Chicago, IL, USA. 2015.
  • Buscaino GA: The amino-hepato-entero-toxic theory of schizophrenia: an historical evaluation. In: Hemmings G, Hemmings WA (eds.): The Biological Basis of Schizophrenia. Springer, Dordrecht 1978: 45–54.
  • Capuzzi E, Bartoli F, Crocamo C et al.: Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: a meta-analysis. Neurosci Biobehav Rev 2017; 77: 122–128.
  • Carpenter LL, Gawuga CE, Tyrka AR et al.: Association between plasma IL-6 response to acute stress and early-life adversity in healthy adults. Neuropsychopharmacology 2010; 35: 2617–2623.
  • Cattaneo A, Macchi F, Plazzotta G et al.: Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci 2015; 9: 40.
  • Chana G, Bousman CA, Money TT et al.: Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front Cell Neurosci 2013; 7: 95.
  • Chestkov IV, Jestkova EM, Ershova ES et al.: ROS-induced DNA damage associates with abundance of mitochondrial DNA in white blood cells of the untreated schizophrenic patients. Oxid Med Cell Longev 2018; 2018: 8587475.
  • Clarke G, Grenham S, Scully P et al.: The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18: 666–673.
  • Clay HB, Sillivan S, Konradi C: Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29: 311–324.
  • Clementz BA, Sweeney JA, Hamm JP et al.: Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry 2016; 173: 373–384.
  • Correll CU, Rubio JM, Inczedy-Farkas G et al.: Efficacy of 42 pharmacologic cotreatment strategies added to antipsychotic monotherapy in schizophrenia: systematic overview and quality appraisal of the meta-analytic evidence. JAMA Psychiatry 2017; 74: 675–684.
  • Coughlin JM, Hayes LN, Tanaka T et al.: Reduced superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with early psychosis in association with clinical features. Schizophr Res 2017; 183: 64–69.
  • Cropley V, Laskaris L, Zalesky A et al.: O1.6. Increased complement factors C3 and C4 in schizophrenia and the early stages of psychosis: implications for clinical symptomatology and cortical thickness. Schizophr Bull 2018; 44 (Suppl 1): S74.
  • Cryan JF, Dinan TG: Gut microbiota: microbiota and neuroimmune signalling-Metchnikoff to microglia. Nat Rev Gastroenterol Hepatol 2015; 12: 494–496.
  • Cuperfain AB, Zhang ZL, Kennedy JL et al.: The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease. Mol Neuropsychiatry 2018; 4: 52–69.
  • Danese A, Moffitt TE, Pariante CM et al.: Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry 2008; 65: 409–415.
  • Dantzer R, O’Connor JC, Lawson MA et al.: Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 2011; 36: 426–436.
  • Dazzan P, Arango C, Fleischacker W et al.: Magnetic resonance imaging and the prediction of outcome in first-episode schizophrenia: a review of current evidence and directions for future research. Schizophr Bull 2015; 41: 574–583.
  • De Picker LJ, Morrens M, Chance SA et al.: Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a metareview. Front Psychiatry 2017; 8: 238.
  • Dennison U, McKernan D, Cryan J et al.: Schizophrenia patients with a history of childhood trauma have a pro-inflammatory phenotype. Psychol Med 2012; 42: 1865–1871.
  • Desbonnet L, Garrett L, Clarke G et al.: The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 2008; 43: 164–174.
  • Diaz Heijtz R, Wang S, Anuar F et al.: Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011; 108: 3047–3052.
  • Dietrich-Muszalska A, Kwiatkowska A: Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia. Neuropsychiatr Dis Treat 2014; 10: 703–709.
  • Đorđević VV, Lazarević D, Ćosić V et al.: Age-related changes of superoxide dismutase activity in patients with schizophrenia. Vojnosanit Pregl 2017; 74: 31–37.
  • Emsley R, Chiliza B, Asmal L: The evidence for illness progression after relapse in schizophrenia. Schizophr Res 2013; 148: 117–121.
  • Erhardt S, Schwieler L, Nilsson L et al.: The kynurenic acid hypothesis of schizophrenia. Physiol Behav 2007; 92: 203–209.
  • Fernandez-Egea E, Vértes PE, Flint SM et al.: Peripheral immune cell populations associated with cognitive deficits and negative symptoms of treatment-resistant schizophrenia. PLoS One 2016; 11: e0155631.
  • Flatow J, Buckley P, Miller BJ: Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74: 400–409.
  • Flippo KH, Strack S: An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 2017; 187: 26–32.
  • Foster JA: Gut microbiome and behavior: focus on neuroimmune interactions. Int Rev Neurobiol 2016; 131: 49–65.
  • Fraguas D, Díaz-Caneja CM, Ayora M et al.: Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull 2018. DOI: 10.1093/schbul/sby125.
  • Gawryluk JW, Wang JF, Andreazza AC et al.: Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14: 123–130.
  • Goldsmith CAW, Rogers DP: The case for autoimmunity in the etiology of schizophrenia. Pharmacotherapy 2008; 28: 730–741.
  • Gonçalves VF, Cappi C, Hagen CM et al.: A comprehensive analysis of nuclear-encoded mitochondrial genes in schizophrenia. Biol Psychiatry 2018; 83: 780–789.
  • Heilbronner U, Samara M, Leucht S et al.: The longitudinal course of schizophrenia across the lifespan: clinical, cognitive, and neurobiological aspects. Harv Rev Psychiatry 2016; 24: 118–128.
  • Howes OD, Kambeitz J, Kim E et al.: The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 2012; 69: 776–786.
  • Husa AP, Moilanen J, Murray GK et al.: Lifetime antipsychotic medication and cognitive performance in schizophrenia at age 43 years in a general population birth cohort. Psychiatry Res 2017; 247: 130–138.
  • Janik R, Thomason LAM, Stanisz AM et al.: Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 2016; 125: 988–995.
  • Javitt DC: Biotypes in psychosis: has the RDoC era arrived? Am J Psychiatry 2016; 173: 313–314.
  • Kambeitz J, Kambeitz-Ilankovic L, Leucht S et al.: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology 2015; 40: 1742–1751.
  • Kettenmann H, Hanisch UK, Noda M et al.: Physiology of microglia. Physiol Rev 2011; 91: 461–553.
  • Kinney DK: Prenatal stress and risk for schizophrenia. Int J Ment Health 2000; 29: 62–72.
  • Konradi C, Öngür D: Role of mitochondria and energy metabolism in schizophrenia and psychotic disorders. Schizophr Res 2017; 187: 1–2.
  • Kulaksizoglu B, Kulaksizoglu S: Relationship between neutrophil/lymphocyte ratio with oxidative stress and psychopathology in patients with schizophrenia. Neuropsychiatr Dis Treat 2016; 12: 1999–2005.
  • Kwak YT, Koo MS, Choi CH et al.: Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Med Genet 2001; 2: 3.
  • Lai CY, Lee SY, Scarr E et al.: Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry 2016; 6: e717.
  • Lai CY, Yu SL, Hsieh MH et al.: MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 2011; 6: e21635.
  • Lane HY, Lin CH, Green MF et al.: Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry 2013; 70: 1267–1275.
  • Light GA, Swerdlow NR: Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 2015; 1344: 105–119.
  • Liu ML, Zheng P, Liu Z et al.: GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells. Mol Biosyst. 2014; 10: 2398–2406.
  • Lombardi VC, De Meirleir KL, Subramanian K et al.: Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J Nutr Biochem 2018; 61: 1–16.
  • Mednick SA, Huttunen MO, Machón RA: Prenatal influenza infections and adult schizophrenia. Schizophr Bull 1994; 20: 263–267.
  • Melbourne JK, Feiner B, Rosen C et al.: Targeting the immune system with pharmacotherapy in schizophrenia. Curr Treat Options Psychiatry 2017; 4: 139–151.
  • Miller BJ, Gassama B, Sebastian D et al.: Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2013; 73: 993–999.
  • Monteggia LM, Barrot M, Powell CM et al.: Essential role of brainderived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A 2004; 101: 10827–10832.
  • Morgan C, Fisher H: Environment and schizophrenia: environmental factors in schizophrenia: childhood trauma – a critical review. Schizophr Bull 2007; 33: 3–10.
  • Nahas Z, Marangell LB, Husain MM et al.: Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 2005; 66: 1097–1104.
  • Nieto R, Kukuljan M, Silva H: BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 2013; 4: 45.
  • Noto C, Ota VK, Gadelha A et al.: Oxidative stress in drug naïve first episode psychosis and antioxidant effects of risperidone. J Psychiatr Res 2015; 68: 210–216.
  • Nour MM, Howes OD: Interpreting the neurodevelopmental hypothesis of schizophrenia in the context of normal brain development and ageing. Proc Natl Acad Sci U S A 2015; 112: E2745.
  • Novaes LS, Dos Santos NB, Dragunas G et al.: Repeated restraint stress decreases Na,K-ATPase activity via oxidative and nitrosative damage in the frontal cortex of rats. Neuroscience 2018. pii: S0306- 4522(18)30642-0. DOI: 10.1016/j.neuroscience.2018.09.037.
  • O’Mahony SM, Clarke G, Dinan TG et al.: Irritable bowel syndrome and stress-related psychiatric co-morbidities: focus on early life stress. Handb Exp Pharmacol 2017; 239: 219–246.
  • Pace TW, Mletzko TC, Alagbe O et al.: Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 2006; 163: 1630–1633.
  • Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010; 6: 193–201.
  • Pocklington AJ, O’Donovan M, Owen MJ: The synapse in schizophrenia. Eur J Neurosci 2014; 39: 1059–1067.
  • Qin J, Li R, Raes J et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65.
  • Rajasekaran A, Venkatasubramanian G, Berk M et al.: Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev 2015; 48: 10–21.
  • Read J, van Os J, Morrison AP et al.: Childhood trauma, psychosis and schizophrenia: a literature review with theoretical and clinical implications. Acta Psychiatr Scand 2005; 112: 330–350.
  • Ripke S, O’Dushlaine C, Chambert K et al.: Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.
  • Rollins BL, Morgan L, Hjelm BE et al.: Mitochondrial complex I deficiency in schizophrenia and bipolar disorder and medication influence. Mol Neuropsychiatry 2018; 3: 157–169.
  • Savignac HM, Corona G, Mills H et al.: Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63: 756–764.
  • Schroeder A, Mueller O, Stocker S et al.: The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006; 7: 3.
  • Shokouhifar A, Askari N, Yazdani S et al.: DISC1 gene polymorphisms and the risk of schizophrenia in an Iranian population: a preliminary study. J Cell Biochem 2018. DOI: 10.1002/jcb.27427.
  • Smulevich AB, Romanov DV, Voronova EI et al.: [Evolution of the schizophrenic deficit concept]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117: 4–14.
  • Srivastava R, Faust T, Ramos A et al.: Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol Psychiatry 2018; 83: 751–760.
  • Sun XY, Zhang J, Niu W et al.: A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2015; 168B: 170–178.
  • Szymona K, Zdzisińska B, Karakuła-Juchnowicz H et al.: Correlations of kynurenic acid, 3-hydroxykynurenine, sIL-2R, IFN-α, and IL-4 with clinical symptoms during acute relapse of schizophrenia. Neurotox Res 2017; 32: 17–26.
  • Toulopoulou T, Picchioni M, Mortensen PB et al.: IQ, the urban environment, and their impact on future schizophrenia risk in men. Schizophr Bull 2017; 43: 1056–1063.
  • Tropea D, Hardingham N, Millar K et al.: Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596: 2747–2771.
  • Tubbs RS, Paulk PB: Essential anatomy of the head and neck: the complete Delphi Panel list. Clin Anat 2015; 28: 423.
  • Üçok A, Bıkmaz S: The effects of childhood trauma in patients with first-episode schizophrenia. Acta Psychiatr Scand 2007; 116: 371–377.
  • Urs NM, Peterson SM, Caron MG: New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry 2017; 81: 78–85.
  • Walker EF, Diforio D: Schizophrenia: a neural diathesis-stress model. Psychol Rev 1997; 104: 667–685.
  • Weber NS, Gressitt KL, Cowan DN et al.: Monocyte activation detected prior to a diagnosis of schizophrenia in the US Military New Onset Psychosis Project (MNOPP). Schizophr Res 2018. pii: S0920-9964(17)30768-5. doi: 10.1016/j.schres.2017.12.016.
  • Whelan R, St Clair D, Mustard CJ et al.: Study of novel autoantibodies in schizophrenia. Schizophr Bull 2018; 44: 1341–1349.
  • Wolfers T, Doan NT, Kaufmann T et al.: Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry 2018. DOI: 10.1001/jamapsychiatry.2018.2467. Xu B, Ionita-Laza I, Roos JL et al.: De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.
  • Xuan J, Pan G, Qiu Y et al.: Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 2011; 10: 5433–5443.
  • Yang FP, He Y, Wang Z et al.: [Research progress of antipsychotics]. Yao Xue Xue Bao 2016; 51: 1809–1821.
  • Yang J, Chen T, Sun L et al.: Potential metabolite markers of schizophrenia. Mol Psychiatry 2013; 18: 67–78.
  • Yarandi SS, Peterson DA, Treisman GJ et al.: Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 2016; 22: 201–212.
  • Zandi MS, Irani SR, Lang B et al.: Disease-relevant autoantibodies in first episode schizophrenia. J Neurol 2011; 258: 686–688.
  • Zandian A, Wingård L, Nilsson H et al.: Untargeted screening for novel autoantibodies with prognostic value in first-episode psychosis. Transl Psychiatry 2017; 7: e1177.
  • Žarković M, Ignjatović S, Dajak M et al.: Cortisol response to ACTH stimulation correlates with blood interleukin 6 concentration in healthy humans. Eur J Endocrinol 2008; 159: 649–652.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-9f030549-b3f4-47f6-bfc4-3eafb2691089
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.