Journal

Article title

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

209-221

Physical description

Contributors

author

- 178/A, Sri Wimalarama Mawatha, Thalavitiya, Parakaduwa, Sri Lanka

- Department of Physics, University of Colombo, Colombo 03. Sri Lanka

References

- [1] Edward Nelson, Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys. Rev. 150, 1079 (1966)
- [2] B. Roy Frieden, Fisher information as the basis for the Schrödinger wave equation, American Journal of Physics 57, 1004 (1989)
- [3] Marcel Reginatto, Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information, Phys. Rev. A 58, 1775 (1998)
- [4] U. Klein, The Statistical Origins of Quantum Mechanics, Physics Research International (2010)
- [5] Maurice Surdin, Derivation of Schrödinger's equation from stochastic electrodynamics, International Journal of Theoretical Physics (1971)
- [6] John S. Briggs, Jan M. Rost, On the Derivation of the Time-Dependent Equation of Schrödinger, Foundations of Physics (2001)
- [7] Millard Baublitz, Derivation of the Schrödinger Equation from a Stochastic Theory, Progress of Theoretical Physics (1988)
- [8] Philip McCord Morse, Herman Feshbach, Methods of Theoretical Physics, Part I, McGraw-Hill, New York (1953)
- [9] Einstein, B. Podolsky, and N. Rosen, Can 7Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777, (1935)
- [10] Roy Frieden, Physics from Fisher Information, a Unification, Cambridge University Press, Cambridge, UK.
- [11] M. Reginatto, Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information, Physical Review A, vol. 58, no. 3, pp. 1775–1778 (1998)
- [12] M. J. W. Hall, Quantum properties of classical fisher information, Physical Review A, vol. 62, no. 1, Article ID 012107, 6 pages, (2000)
- [13] R. A. Fisher, Statistical Methods and Scientific Inference, Oliver and Boyd, Edinburgh, UK, (1956)
- [14] E. T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106, 620 (1957)
- [15] Caticha and D. Bartolomeo, Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics, AIP Conference Proceedings 1641, 155 (2015).
- [16] L. Nottale, The Theory of Scale Relativity, International Journal of Modern Physics A, Vol. 07, No. 20, pp. 4899-4936 (1992)
- [17] Shunlong Luo, Quantum Fisher Information and Uncertainty Relations, Letters in Mathematical Physics 53: 243-251 (2000)
- [18] A.J.Stam, Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon, Information and Control 2, 101-112 (1959)
- [19] Cramér, Harald, Mathematical Methods of Statistics, NJ: Princeton Univ. Press, (1946), ISBN 0-691-08004-6

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-9eeed184-1205-4d3a-89fd-2d2f8b025e01