PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 16 - 36
Article title

THE USE OF CHITIN AND CHITOSAN IN MANUFACTURING DRESSING MATERIALS

Content
Title variants
Languages of publication
EN
Abstracts
EN
Despite continuous progress in the development of advanced dressing materials, there is a constant need for dressings used in an environment of infected and hard-to-heal wounds. Dressings that meet the above described requirements are products based on chitin and its derivatives. Chitosan and chitin derivative dressings are now becoming a very effective medical device in healing hard-to-heal wounds, as well as in the control of severely bleeding wounds. Chitosan and chitin are particularly valuable raw materials that accelerate wound healing processes, and they are also biocompatible and antibacterial. Dressings made of butyric-acetic chitin copolyester are intended for treating wounds of various aetiologies, including chronic wounds in which the healing process is disturbed by concomitant diseases. Materials based on chitosan are also widely used in the area of heavily bleeding and chronic wounds.
Publisher

Year
Volume
25
Pages
16 - 36
Physical description
Contributors
  • Tricomed S.A
  • Lodz University of Technology, Faculty of Chemistry, Institute of Organic Chemistry
  • Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology,
author
References
  • Du, Y.; Zhao, Y.; Dai, S.; Yang, B. (2009) Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. Technol., 10(1), 103-107. DOI: 10.1016/j.ifset.2008.07.004
  • Pillai, C.K.S.; Paul, W.; Sharma, C.P. (2009) Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 34(7), 641-678., DOI: 10.1016/j.progpolymsci.2009.04.001.
  • Mucha M., (2010) Chitosan: a versatile polymer from renewable sources, WNT, Warsaw, 2010.
  • No H.K., Meyers S.P., Lee K.S., (1989) Isolation and characterization of chitin from crawfish shell waste Agric. Food Chem., 37, 575-579, DOI: 10.1021/jf00087a001.
  • Struszczyk H., Chitin and chitosan. Part I. Properties and production (2002) Polimery, 47, 316-325.
  • I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, Á. Heras, (2009) Functional Characterization of Chitin and Chitosan, Current Chemical Biology, 3, 203-230; DOI: 10.2174/187231309788166415.
  • B. K. Park, M.-M. Kim, (2010) Applications of Chitin and Its Derivatives in Biological Medicine, Int J Mol Sci. 11(12): 5152–5164; DOI: 10.3390/ijms11125152
  • J. Kumirska, M. X. Weinhold, J. Thöming, P. Stepnowski, (2011) Biomedical Activity of Chitin/Chitosan Based Materials -Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation, Polymers, 3, 1875-1901; DOI: 10.3390/polym3041875
  • R. P. Yadav, M. K. Chauhan, (2017) Pharmaceutical Diversity of Chitin and Chitosan: A Review, International Journal of Pharmaceutical Science and Research, 2, 6-11
  • K. Tripathi, Anita Singh, (2018) Chitin, chitosan and their pharmacological activities: a review. Int J Pharm Sci Res; 9(7): 2626-35; DOI: 10.13040/IJPSR.0975-8232.9(7).2626-35
  • Zargar V and Asghari M, (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives and applications. Chem Bio Eng Rev 2015; 2: 1-24, DOI: 10.1002/cben.201400025
  • M. Sugimoto, M. Kawahara, Y. Teramoto, Y. Nishio, (2010) Carbohyd. Polym., 79, 948.
  • Bhatt, L.R.; Kim, B.M.; Hyun, K.; Kang, K.H.; Lu, C.; Chai, K.Y. (2011) Preparation of chitin butyrate by using phosphoryl mixed anhydride system. Carbohydr. Res., 346, 691–694; DOI: 10.1016/j.carres.2011.01.033
  • Bhatt, L.R.; Kim, B.M.; An, C.Y.; Lu, C.C.; Chung, Y.S.; Soung, M.G.; Park, S.H.; Chai, K.Y. (2010) Synthesis of chitin cycloalkyl ester derivatives and their physical properties. Carbohydr. Res., 345, 2102–2106; DOI: 10.1016/j.carres.2010.07.017
  • Bhatt, L.R.; Kim, B.M.; Hyun, K.; Kwak, G.B.; Lee, C.H.; Chai, K.Y. (2011) Preparation and characterization of chitin benzoic acid esters. Molecules, 16, 3029–3036, DOI: 10.3390/molecules16043029
  • Szosland, L.; East, G.C. (1995) The Dry Spinning of Dibutyrylchitin Fibers. J. Appl. Polym. Sci., 58, 2459–2466, DOI: 10.1002/app.1995.070581313
  • Pielka, S., Paluch, D., Staniszewska-Kuś, J., Żywicka, B., Solski, L., Szosland, L., Czarny, A., Zaczyńska, E. (2003) Wound Healing Acceleration by a Textile Dressing Containing Dibutyrylchitin and Chitin, Fibres & Textiles in Eastern Europe, Nr 2 (41), 79—84
  • Szosland, L.; Krucinska, I.; Cisło, R.; Paluch, D.; Staniszewska-Kus, J.; Solski, L.; Szymonowicz, M. (2001) Synthesis of dibutyrylchitin and preparation of new textiles made from dibutyrylchitin. Fibres Text. East. Eur., 9, 54–57;
  • Paluch, D.; Pielka, S.; Szosland, L.; Staniszewska-Kus, J.; Szymonowicz, M.; Solski, L.; Zywicka, B. (2000) Bilogical investigation of the regenerated chitin fibres. Eng. Biomater., 12, 17–22;
  • Chilarski, A.; Szosland, L.; Krucinska, I.; Kiekens, P.; Blasinska, A.; Schoukens, G.; Cislo, R.; Szumilewicz, J. (2007) Novel Dressing Materials Accelerating Wound Healing Made from Dibutyrylchitin. Fibers Text. East. Eur., 15, 77–81.
  • S. Tokura, N. Nishi, J. Noguchi, (1979) Studies on Chitin. III. Preparation of Chitin Fibers Polym. J. 1979, 11, 781-786.
  • Tokura, S.; Nishi, N.; Somorin, O.; Noguchi, J. (1980) Studies on chitin. IV. Preparation of acetylchitin fibers. Polym. J., 12, 695–700.
  • Van Luyen, D.; Rossbach, V. (1995) Mixed esters of chitin. J. Appl. Polym. Sci., 55, 679–685; DOI: 10.1002/app.1995.070550504
  • Bourne, E.J.; Stacey, M.; Tatlow, J.C.; Tedder, J.M. (1949) Studies on trifluoroacetic acid. Part I. Trifluoroacetic anhydride as a promoter of ester formation between hydroxy-compounds and carboxylic acids. J. Chem. Soc., 2976–2979.
  • Draczyński Z., Boguń M., Sujka W., Kolesińska B., (2018) An industrial scale synthesis of biodegradable soluble in organic solvents butyric-acetic chitin copolyesters. Advances in Polymer Technology, 1-12, DOI: 10.1002/adv.22090
  • Draczyński, Z., Boguń, M., Mikołajczyk, T., Szparaga, G., Król, P. (2013) The influence of forming conditions on the properties of the fibers made of chitin butyryl-acetic copolyester for medical applications Journal of Applied Polymer Science, 127 (5), pp. 3569-3577, DOI: 10.1002/app.37784
  • Draczynski Z., Kolesinska B., Latanska I., Sujka W., (2018) Preparation Method of Porous Dressing Materials Based on Butyric-Acetic Chitin Co-Polyesters, Materials, 11, DOI: 10.3390/ma11122359
  • Tokura, S.; Nishi, N.; Tsutsumi, A.; Somorin, O. (1983) Studies on chitin VIII. Some properties of water soluble chitin derivatives. Polym. J., 15, 485–489.
  • D. Van Luyen, V. Rossbach, (1995) Mixed esters of chitin, J. App. Pol. Sci. 1995, 55, 679, DOI: 10.1002/app.1995.070550504
  • P.404249 Chitin esters dressing and method of making chitin esters, Draczyński Z., Szosland L., Janowska G., Sujka W., Rogaczewska A. dated: 07.06.2013.
  • Maramu, N., & Rao, B. S. (2018). A Study on Stabilization of Polymers Against Radiation. Research & Reviews: Journal of Physics, 6(3), 18-20.; DOI: 10.37591/rrjophy.v6i3.131
  • Tipnis, N. P., & Burgess, D. J. (2018). Sterilization of implantable polymer-based medical devices: A review. International journal of pharmaceutics, 544(2), 455-460; DOI: 10.1016/j.ijpharm.2017.12.003
  • Sameh. A.S. Alariqi, A. Pratheep Kumar, B.S.M. Rao, Amit K. Tevtia, R.P. Singh, (2006) Stabilization of γ-sterilized biomedical polyolefins by synergistic mixtures of oligomeric stabilizers, Polymer Degradation and Stability, Volume 91, Issue 10, 2451-2464, DOI:10.1016/j.polymdegradstab.2006.03.010;
  • Shamshad, A., & Basfar, A. A. (2000). Radiation resistant polypropylene blended with mobilizer: antioxidants and nucleating agent. Radiation Physics and Chemistry, 57(3-6), 447-450; DOI: 10.1016/S0969-806X(99)00412-0
  • Przybytniak, G., Mirkowski, K., Rafalski, A., Nowicki, A., Legocka, I., & Zimek, Z. (2005) Effect of hindered amine light stabilizers on the resistance of polypropylene towards ionizing radiation. Nukleonika, 50(4), 153-159.
  • Sujka W., Draczynski Z., Kolesińska B., Latańska I., Jastrzębski Z., Rybak Z., Żywicka B., (2019) Influence of porous dressings based on butyric-acetic chitin copolymer on biological proces in vitro and in vivo, Materials, 12, 970, DOI: 10.3390/ma12060970
  • Latanska I., Kozera – Żywczyk A., Paluchowska E. B., Owczarek W., Kaszuba A., Noweta M., Tazbir J., Kolesinska B., Draczyński Z., Sujka W., (2019) Characteristic features of wound dressings based on butyric-acetic chitin copolyesters results of clinical trial, Materials, 12(24)4170, DOI: 10.3390/ma12244170
  • Dutta PK., Tripathi VS.: (2004) Chitin and chitosan: chemistry, properties and application. Journal of Scientific and Industrial Research; 63: 20-31;
  • Prashanth KV., Tharanathan RN: (2007) Chitin/chitosan: modifications and their unlimited application potential an overview. Trends in Food Science and Technology; 18: 117-131, DOI: 10.1016/j.tifs.2006.10.022
  • Draczyński, Z., Grgac, S.F., Dekanić, T., Tarbuk, A., Boguń, M. (2017) Implementation of chitosan into cotton fabric, Tekstilec, 60 (4), pp. 296-301
  • Kozen BJ., Kircher SJ., (2005) An alternate hemostatic dressing: comparison of CELOX, HemCon and quick Clot. J. Emerg Med; 15: 74-81; DOI: 10.1111/j.1553-2712.2007.00009.x
  • Gegel BT., Austin PN,. Johnson AD., (2013) An evidence-based review of the use of combat gauze (QuikClot) for hemorrhage control. Aana J; 81(6): 453-458;
  • Boateng J., Catanzano O., (2015) Advanced therapeutic dressings for effective wound healing-a review. Journal of Pharmaceutical Sciences; 104(11): 3653-3680, DOI: 10.1002/jps.24610
  • Paul P., Kolesińska B., Sujka W., (2018) Chitosan and its derivatives - biomaterials with diverse biological activity for manifold applications, Mini- Reviews in Medicinal Chemistry, DOI: 10.2174/1389557519666190112142735
  • Witkowski W., Surowiecka-Pastewka A., Sujka W. , Matras-Michalska J., Bielarska A., Stępniak M., (2015) PMCF evaluation of efficiency, safety and silver ion secretion from the TROMBOGUARD hemostatic first aid tactical dressing, Military Doctor,93(4), 301-314
  • Modrzejewska Z., Rogacki G., Sujka W., Zarzycki R., (2016) Sorption of copper by chitosan hydrogel: Kinetics and equilibrium, Chemical Engineering and Processing: Process Intensification, 109, 104-113, DOI: 10.1016/j.cep.2016.08.014
  • Domard A., Domard M., (2002) Chitosan: Structure properties relationship and biomedical applications. Biomater; 9: 187-212;
  • Younes I., Rinaudo M., (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications Mar Drugs; 13(3): 1133-1174; DOI: 10.3390/md13031133
  • D’Ayala GG., Malinconico M., Laurienzo P., (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules; 13(9): 2069-2106; DOI: 10.3390/molecules13092069
  • Chandran VS., Amritha TS., Rajalekshmi G., Pandimadevi M., (2015) Potential wound healing materials from the natural polymers - a review. Int J Pharm Bio Sci, 6(3): (B)1365-1389;
  • Baldrick P., (2009) The safety of chitosan as a pharmaceutical excipients. Regul, Toxicol, Pharmacol; 56: 290-299; DOI: 10.1016/j.yrtph.2009.09.015
  • Dai T., Tanaka M., Huang Y., Hamblin MR., (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert review of Anti-Infective Therapy; 9(7): 857-879; DOI: 10.1586/eri.11.59
  • Bhattarai N., Gunn J., Zhang M. (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews; 62(1): 83-99; DOI:10.1016/j.addr.2009.07.019
  • Kang HK., Seo CH., (2015) The effects of marine carbohydrates and glycosylated compounds on human health. Int. J. Mol. Sci; 16: 6018-6056; DOI: 10.3390/ijms16036018
  • Ong SY., Wu J., Moochhala SM., Tan MH. Lu J., (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials; 29: 4323-32; DOI: 10.1016/j.biomaterials.2008.07.034
  • Davydova VN., Kalitnik A., (2016) Cytokine-inducing and anti-inflammatory activity of chitosan and its low-molecular derivative. Applied Biochemistry and Micro-biology; 52(5): 476-482;
  • Adam J. Friedman, Jenny Phan, David O.Schairer, Jackson Champer, Min Qin, Aslan Pirouz, Karin Blecher-Paz, Ami Oren, Phil T.Liu, Robert L.Modlin, Jenny Kim (2013) Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens. Journal of Investigative Dermatology; 133: 1231-1239; DOI: 10.1038/jid.2012.399
  • Jeon YJ., Kim SK., (2002) Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrance reactor system. J Microbiol Biotechnol; 12(3): 503-7.
  • Papineau A., Hoover M., Knorr DG., Farkas DF., (1991) Antimicrobial effect of water soluble chitosans with high hydrostatic pressure. Food Biotechnol; 5(1): 45-5; DOI: 10.1080/08905439109549790
  • Sudarshan NR., Hoover DG., Knorr D. (1992) Antibacterial action of chitosan. Food Biotechnol; 6: 257-272; DOI: 10.1080/08905439209549838
  • Raafat D., Bargen K., Haas KA., Sahl HG., (2008) Insights into the mode of action of chitosan as an antibacterial compound Appl. Environ. Microbiol; 74: 3764-3773; DOI: 10.1128/AEM.00453-08
  • Devlieghere F., Vermeulen A., Debevere, J., (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol; 21: 703-714; DOI: 10.1016/j.fm.2004.02.008
  • Fang S., Li W., Shih CF., (1994) Antifungal activity of chitosan and its preservative effect on low-sugar Candied Kumquat. Food Prot; 57: 136-140; DOI: 10.4315/0362-028X-57.2.136
  • Chung YC., Chen CY., (2008) Antibacterial characteristic and activity of acid soluble chitosan Bioresource Technol.; 99: 2806-2814; DOI: 10.1016/j.biortech.2007.06.044
  • Helander IM., Lassila NEL., Ahvenainen R., Rhoades J., Roller S., (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol; 30: 235-44; DOI: 10.1016/S0168-1605(01)00609-2
  • Másson M., Holappa J., Hjálmarsdóttir M., Rúnarsson Ö., Nevalainen VT., Järvinen T, (2008) The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives carbohyd. Polym; 74: 566-571; DOI: 10.3390/md12084635
  • Yalpani M., Johnson F., Robinson LE., (2001) Antimicrobial activity of some chitosan derivatives. Advances in chitin and chitosan, Elsevier Applied sciences; 543-548;
  • Sebti I., Carnet A., Pantiez A., Grelier S., Coma VJ. (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. Food Sci; 70: 100 – 104; DOI: 10.1111/j.1365-2621.2005.tb07098.x
  • Agrawal K. (2010) Chitosan as classic biopolymer, a review. IJPLS; 1(7): 369-372;
  • Majekodunmi SO., (2016) Current development of extraction, characterization and evaluation of properties of chitosan and its use in medicine and pharmaceutical industry. American Journal of Polymer Science; 6(3): 86-91;
  • Selvaral S., (1996) Chitosan loaded microspheres as an ocular delivery system for acyclovir. Int J Pharm Pharm Sci.; 4(1): 125-132;
  • Kong M., Chen XG., Xing K., Park HJ. (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol; 144(1): 51-63, DOI: 10.1016/j.ijfoodmicro.2010.09.012
  • Li Y., Ju D., (2017) The application, neurotoxicity, and related mechanism of cationic polymers. Academic Press; 285-329; DOI: 10.1016/B978-0-12-804598-5.00012-X
  • Zhang W., Zhang J., Jiang Q., Xia W. (2013) The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling. Carbohydr. Polym.; 95(1): 487-491; DOI: 10.1016/j.carbpol.2013.02.037
  • Chen D., Hu B., Huang C. (2009) Chitosan modified ordered mesoporous silica as micro-column packing materials for on-line flow injection-inductively coupled plasma optical emission spectrometry determination of trace heavy metals in environmental water samples. J. Talanta; 78(2): 491-497; DOI: 10.1016/j.talanta.2008.11.046
  • Gomaa YA., El-Khordagui LK., BoraeiNA., Darwish IA, (2010) Formulation of wax oxybenzone microparticles using a factorial approach. Carbohydr. Polym; 81 (2): 234-242; DOI: 10.3109/02652048.2010.506580
  • Muramatsu K., Masuda S., Yoshihara Y., Fujisawa A., (2003) subacute systemic toxicity assessment of β-tricalcium phosphate/carboxymethyl-chitin composite implanted in rat femur. Polym. Degrad. Stab; 81(2): 327-332;
  • Madhumathi K., Kumar S., Kavya K., Furuike T., Tamura H., Nair S., Jayakumar R., (2009) Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol; 45(3): 289-292; DOI: 10.1016/j.ijbiomac.2008.09.013
  • Agnihotri SA., Mallikarjuna NN., Aminabhavi TM., (2004) Recent advances on chitosan-based micro- and nano particles in drug delivery. J Controll Release; 100(1): 5-28; DOI: 10.1016/j.jconrel.2004.08.010
  • Dai M., Zheng X., Xu X., Kong X., Li X., Guo G., Qian Z., (2009) Chitosanalginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. Bio Med Research International; 1-8; DOI: 10.1155/2009/595126
  • Momin M., Kurhade S., Khanekar P., Mhatre S., (2016) Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing. Journal of Wound Care; 25(6): 364-372; DOI: 10.12968/jowc.2016.25.6.364
  • Vinová J., Vavíková E., (2011) Chitosan derivatives with antimicrobial, antitumour and antioxidant activities - a review. Current Pharmaceutical Design; 17: 3596-3607; DOI: 10.2174/138161211798194468
  • Rajasree R., Rahate KP., (2013) An overview on various modifications of chitosan and its applications. International Journal of Pharmaceutical Sciences and Research; 4(11): 4175-4193;
  • Tan YL.,Liu CG., (2009) Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application invitro. Colloids and Surfaces B. Biointerfaces; 69: 178-182; DOI: 10.1016/j.colsurfb.2008.11.026
  • Ahmed EM., (2015) Hydrogel: Preparation, characterization and applications: A review. Journal of Advanced Research; 6(2): 105-121; DOI: 10.1016/j.jare.2013.07.006
  • Huo M., Zhang Y., Zhou J. (2010) Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumour drug. Int J Pharm; 394: 162-173, DOI: 10.1016/j.ijpharm.2010.05.001
  • Fang Li., Jianing Li., (2009) Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: An in vitro study. Materials Science and Engineering: C; 29(15): 2392-2397; DOI: 10.1016/j.msec.2009.07.001
  • Vongchan P., (2002) Anticoagulant activity of a sulfated chitosan. Carbohydrate Research; 337: 1239-1242; DOI: 10.1016/S0008-6215(02)00098-8
  • Olivier B., Jean YR., (2007) Glucosamine and chondroit in sulfate as therapeutic agents for knee and hip osteo-arthritis. Drugs and Aging; 24(7): 573-580;
  • Prasad RS., (2013) Preparation, characterization and anti- inflammatory activity of chitosan stabilized silver nano particles. Research J. Pharma. Dosage Forms and Tech; 5(3): 161-167;
  • Zhang JL., (2008) Effects of chitosans physico-chemical properties on binding capacities of lipid and bile salts in- vitro. Chinese Food Science; 29(1): 45-49;
  • Liu JN., Zhang JL., Maezaki Y., Tsuji K., Nakagawa Y., Kawai Y., Akimoto M., Tsugita T., (2008) Hypocholesterolemic effects of different chitosan samples in-vitroand in-vivo. Food Chemistry; 107: 419-425; DOI: 10.1016/j.foodchem.2007.08.044
  • Huimin Q., (2015) The antihyperlipidemic mechanism of high sulfate content Ulvan in rats. Mar. Drugs; 13(3): 407-3421; DOI: 10.3390/md13063407
  • Pan H. and Yang Q., (2016) Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet. Food and Nutrition; 60: 31137; DOI: 10.3402/fnr.v60.31137
  • Kerch G., (2015) The Potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Drugs; 13: 2158-2182; DOI: 10.3390/md13042158
  • Patil M., Debasrita Dash (2013) Chitosan: a versatile bio-polymer for various medical applications. Journal of Scientific and Engineering Research; 4(1): 1-16;
  • Davydova VN., Nagorskaia VP., Gorbach VI., Kalitnik AA., Reunov AV., Solov’eva TF., Ermak IM. (2011) Chitosan antiviral activity: dependence on structure and deploymerization method. Prikl Biokhim Mikrobiol.; 47(1): 113-8;
  • George P., Nikolaos B., (2006) Swelling studies and in-vitro release of verapamil from calcium alginate and calcium alginate chitosan beads. International Journal of Pharmaceutics; 3231(2): 34-4; DOI: 10.1016/j.ijpharm.2006.05.054
  • Je JY., Kim SK., (2003) Angiotensin I converting enzyme (ACE) inhibitory activity of hetero chitooligosaccharides prepared from partially different deacetylated chitosans. J. Agric. Food Chem; 51: 4930-4934., DOI: 10.1021/jf0340557
  • Sandra Flinčec Grgac , Anita Tarbuk, Tihana Dekanić, Witold Sujka, Zbigniew Draczyński (2020) The chitosan implementation into cotton and poliester / cotton blend fabrics, , Materials 2020, 13(7), 1616; DOI: 10.3390/ma13071616
  • Boonkong W., Petsom W., Thongchul N., (2013) Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/ polycaprolactone wound dressing device, J. Mater. Sci. Mater Med., 2013, 24, 1581-1593
  • Kunio N., Riha G, Watson K, et al., (2013) Chitosan based advanced hemostatic dressing is associated with decreased blood loss in a swine uncontrolled hemorrhage model, Am. J. Surg., 205, 505-510, DOI: 10.1016/j.amjsurg.2013.01.014
  • Jayakumar, R., Prabaharan P., Kumar S., et al., (2011) Biomaterials based on chitin and chitosan in wound dressing applications Biotechnol. Adv., 29, 322-337., DOI: 10.1016/j.biotechadv.2011.01.005
  • Watters J., Van P, Hamilton G., et al., (2011) Advanced Hemostatic Dressings Are Not Superior to Gauze for Care Under Fire Scenarios, Injury Infect Crit Care, 70, 1413-1419, DOI: 10.1097/TA.0b013e318216b796
  • Gordy S., Rhee P., Schreiber M., (2011) Military applications of novel hemostatic devices Expert Rev Med Devices, 2011, 8, 41-47, DOI: 10.1586/erd.10.69
  • Lee, K. Y.; Mooney, D. J., (2012) Alginate: Properties and biomedical applications, Prog. Polym. Sci., 37 (1), 106-126, DOI: 10.1016/j.progpolymsci.2011.06.003
  • P.216818 Layered haemostatic dressing and method of obtaining layered haemostatic dressing, Kucharska M., Niekraszewicz A., Ciechańska D., Gruchała B., Struszczyk M., Fortuniak K., Śmiałkowska – Opałka M., Tarkowska S., Witczak E., Rogaczewska A., Płoszaj I., Andziak P., Witkowski W., dated 22.01.2010
  • P.412786 A method of producing a dressing accelerating granulation in the form of an aerosol. Rogaczewska A., Pluta A., Gąsiorowski T., Sujka W., Szymczyk P., dated 24.05.2010.
  • P.391310 A dressing accelerating granulation, a method of producing a dressing accelerating granulation. Rogaczewska A., Pluta A., Gąsiorowski T., Sujka W., Szymczyk P., dated 24.05.2010.
Document Type
review
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-9ed4a2fd-0c39-4cdc-8174-6974e8ab5be9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.