Title variants
Languages of publication
Abstracts
The magnetron sputtering technology has been applied to obtain five kinds of thin, nickel-rich layers on tungsten powder substrate. Circular plates (30 mm in diameter) of pure nickel (99.9%), inconel 600 (72% Ni, 17% Cr, 10% Fe), inconel 601 (63% Ni, 25% Cr, 7.6% Fe), inconel c-276 (51% Ni, 16.5% Cr, 17% Mo) and incoloy H / HT (35% Ni, 23% Cr, 39.5% Fe) were used as sputtering targets. The nickel-based layers have been deposited on pure tungsten powder (2 g; fraction 20-50 µm). After 2 hours of sputtering, the produced layers have been dissolved in 2M HCl solution. The obtained solutions were then analyzed on Ni2+, Cr3+, Fe2+ or Mo2+ ions. The analysis data allows for evaluation of the thickness of the obtained coatings.
Discipline
Publisher
Journal
Year
Volume
Pages
16-22
Physical description
Contributors
author
- Department of Chemistry, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Al. Armii Krajowej, 42-200 Czestochowa, Poland
References
- [1] O. K. Alexeeva, V. N. Fateev, International Journal of Hydrogen Energy, 41 (5) (2016) 3373-3386
- [2] F. M. Penning, Coating by cathode disintegration, Patent 2 146 025 AH01J41/06, H01J41/20, H01J41/00, C23C14/35, USA (1939)
- [3] L. Xie, P. Brault, J.M. Bauchire, A.L. Thomann, L. Bedra, Journal of Physics D: Applied Physics, 47 (22) (2014) 224004
- [4] K. Sarakinos, J. Alami, S. Konstantinidis, Surface and Coatings Technology, 204 (11) (2010) 1661-1684
- [5] C.A. Davis, Thin Solid Films, 226 (1) (1993) 30-34
- [6] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson, Thin Solid Films, 513 (1-2) (2006) 1-24
- [7] Y. Pauleau, Vacuum, 61 (2-4) (2001) 175-181
- [8] J. T. Gudmundsson, J. Alami, U. Helmersson, Surface and Coatings Technology, 161 (2-4) (2002) 249-256
- [9] O. K. Alexeeva, D. M. Amirkhanov, A. A. Kotenko, M. M. Chelyak, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Springer (2007) 95-103
- [10] O. K. Alexeeva, B. L. Shapir, V.N. Sumarokov, E. A. Vinogradova, International Journal of Hydrogen Energy, 24 (2-3) (1999) 235-239
- [11] Stefaniak, K. Bordolińska, Ochrona przed Korozją, 58 (7) (2015) 261-263
- [12] K. Bordolińska, A. Stefaniak, P. Pawlik, Hutnik, 82 (10) (2015) 666-669
- [13] Z. Yu, Z. G. Shen, Indian Journal of Physics, 89 (2015) 489-494
- [14] X. Yu, Z. Shen, Z. Xu, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 265 (2) (2007) 637-640
- [15] Stefaniak, K. Bordolińska, M. Sozańska, Ochrona przed Korozją, 59 (9) (2016) 330-333
- [16] K. Bordolińska, H. Bala, Ochrona przed Korozją, 60 (4) (2017) 102-104
- [17] K. Bordolińska, A. Stefaniak, H. Bala, Ochrona przed Korozją, 59 (2) (2016) 43-45
- [18] Stefaniak, K. Bordolińska, H. Bala, Ochrona przed Korozją, 59 (4) (2016) 91-93
- [19] J. Dora, Zasilacz rezonansowy, Patent PL nr 313150, Urząd Patentowy RP (1996), Poland.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-9e978234-ccf2-4029-92fc-5c864d2a9259