PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 76 | 16-22
Article title

Manufacturing of thin nickel-rich alloy films on powder substrate using magnetron sputtering technique

Content
Title variants
Languages of publication
EN
Abstracts
EN
The magnetron sputtering technology has been applied to obtain five kinds of thin, nickel-rich layers on tungsten powder substrate. Circular plates (30 mm in diameter) of pure nickel (99.9%), inconel 600 (72% Ni, 17% Cr, 10% Fe), inconel 601 (63% Ni, 25% Cr, 7.6% Fe), inconel c-276 (51% Ni, 16.5% Cr, 17% Mo) and incoloy H / HT (35% Ni, 23% Cr, 39.5% Fe) were used as sputtering targets. The nickel-based layers have been deposited on pure tungsten powder (2 g; fraction 20-50 µm). After 2 hours of sputtering, the produced layers have been dissolved in 2M HCl solution. The obtained solutions were then analyzed on Ni2+, Cr3+, Fe2+ or Mo2+ ions. The analysis data allows for evaluation of the thickness of the obtained coatings.
Publisher

Year
Volume
76
Pages
16-22
Physical description
Contributors
  • Department of Chemistry, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Al. Armii Krajowej, 42-200 Czestochowa, Poland
References
  • [1] O. K. Alexeeva, V. N. Fateev, International Journal of Hydrogen Energy, 41 (5) (2016) 3373-3386
  • [2] F. M. Penning, Coating by cathode disintegration, Patent 2 146 025 AH01J41/06, H01J41/20, H01J41/00, C23C14/35, USA (1939)
  • [3] L. Xie, P. Brault, J.M. Bauchire, A.L. Thomann, L. Bedra, Journal of Physics D: Applied Physics, 47 (22) (2014) 224004
  • [4] K. Sarakinos, J. Alami, S. Konstantinidis, Surface and Coatings Technology, 204 (11) (2010) 1661-1684
  • [5] C.A. Davis, Thin Solid Films, 226 (1) (1993) 30-34
  • [6] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson, Thin Solid Films, 513 (1-2) (2006) 1-24
  • [7] Y. Pauleau, Vacuum, 61 (2-4) (2001) 175-181
  • [8] J. T. Gudmundsson, J. Alami, U. Helmersson, Surface and Coatings Technology, 161 (2-4) (2002) 249-256
  • [9] O. K. Alexeeva, D. M. Amirkhanov, A. A. Kotenko, M. M. Chelyak, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Springer (2007) 95-103
  • [10] O. K. Alexeeva, B. L. Shapir, V.N. Sumarokov, E. A. Vinogradova, International Journal of Hydrogen Energy, 24 (2-3) (1999) 235-239
  • [11] Stefaniak, K. Bordolińska, Ochrona przed Korozją, 58 (7) (2015) 261-263
  • [12] K. Bordolińska, A. Stefaniak, P. Pawlik, Hutnik, 82 (10) (2015) 666-669
  • [13] Z. Yu, Z. G. Shen, Indian Journal of Physics, 89 (2015) 489-494
  • [14] X. Yu, Z. Shen, Z. Xu, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 265 (2) (2007) 637-640
  • [15] Stefaniak, K. Bordolińska, M. Sozańska, Ochrona przed Korozją, 59 (9) (2016) 330-333
  • [16] K. Bordolińska, H. Bala, Ochrona przed Korozją, 60 (4) (2017) 102-104
  • [17] K. Bordolińska, A. Stefaniak, H. Bala, Ochrona przed Korozją, 59 (2) (2016) 43-45
  • [18] Stefaniak, K. Bordolińska, H. Bala, Ochrona przed Korozją, 59 (4) (2016) 91-93
  • [19] J. Dora, Zasilacz rezonansowy, Patent PL nr 313150, Urząd Patentowy RP (1996), Poland.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-9e978234-ccf2-4029-92fc-5c864d2a9259
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.