PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 30 | 57-67
Article title

Nano-Investigations on Surface Topology and Structural Suitability of Gramicidine Drug

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present studies discuss the 3D-AFM nano-structural features of gramicidine – A trying to link between its nano-structural properties and its applications. The branching of polypeptide linkage of gramicidine needs special stereo – orientation to be applied as therapeutic antibacterial cream or ointment. The present 3D-AFM- investigations introduce important conclusive remarks enhance scientific community to understand why gramicidin family as antibiotic cream or ointment are structurally suitable with special surface topography enhance it to be applied as cream or ointment. Poly-peptide linkage chains have high flexibility factor with maximum degree of freedom to be bend or rotates.
Year
Volume
30
Pages
57-67
Physical description
Contributors
  • Materials Science Unit, Chemistry Department, Faculty of Science, Tanta University, 31725 - Tanta, Egypt
References
  • [1] Shea KM (2003). Antibiotic resistance: what is the impact of agricultural uses of antibiotics on children’s health? Pediatrics 112: 253-258.
  • [2] Tossi A, Sandri L, Giangaspero A (2000). Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55: 4-30.
  • [3] Brogden KA (2005). Antimicrobial peptides pore formers or metabolic inhibitors in bacteria? Nature 3: 238-250.
  • [4] Ganz T (2003). Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol 3: 710-720.
  • [5] Zasloff M (2002). Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. [PubMed].
  • [6] Brogden KA, Ackermann M, McCray PB, Tack BF (2003). Antimicrobial peptides in animals and their role in host defenses. Int J Antimicrob Agents 22: 465-478. [PubMed]
  • [7] Vizioli J, Salzet M (2002). Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci. 23: 494-496.
  • [8] Fernandez de Caleya R, Gonzalez-Pascual B, Garcia-Olmedo F, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23: 998-1000.
  • [9] Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001). Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J., 81: 1475-1485.
  • [10] Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992). Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416-12423.
  • [11] Bechinger B (1999). The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462: 157-183.
  • [12] Bierbaum G, Sahl HG (1987). Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 169: 5452-5458.
  • [13] Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000). Structure - activity analysis of buforin II, a histone H2Aderived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97: 8245-8250.
  • [14] Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276: 5836-5840.
  • [15] Park CB, Kim HS, Kim SC (1998). Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244: 253-257.
  • [16] Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002). Sublethal concentrations of pleurocidinderived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46 :605-614.
  • [17] Nicholson, L.K. and Cross, T.A. Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of á-type hydrogen bonding. Biochemistry, 28, 1989, 9379-9385.
  • [18] Levitt, D.G., Elias, S.R., and Hautman, J.M. Number of water molecules coupled to thetransport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim. Biophys. Acta, 512, 1978, 436-451.
  • [19] Andersen, O.S., Koeppe, R.E., II, and Roux, B. Gramicidin channels: versatile tools. In Chung, S.H., Andersen, O.S., and Krishnamurthy, V. (eds.) Biological Membrane Ion Channels. Springer, New York, 2007.
  • [20] Myers, V.B. and Haydon, D.A. Ion transfer across lipid membranes in the presence of gramicidin. II. The ion selectivity. Biochim. Biophys. Acta , 274, 1972, 313-322.
  • [21] Russell, E.W.B., Weiss, L.B., Navetta, F.I., Koeppe, R.E., II, and Andersen, O.S. Singlechannel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A. Biophys. J., 49, 1986, 673-686.
  • [22] Becker, M.D., Greathouse, D.V., Koeppe, R.E., II, and Andersen, O.S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry, 30, 1991, 8830-8839.
  • [23] Andersen, O.S., Greathouse, D.V., Providence, L.L., Becker, M.D., and Koeppe, R.E., II. Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin A channels. J. Am. Chem. Soc. 120, 1998, 5142-5146.
  • [24] Cotten, M., Tian, C., Busath, D.D., Shirts, R.B., and Cross, T.A. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry, 38, 1999, 9185-9197.
  • [25] Jude, A.R., Greathouse, D.V., Koeppe, R.E., II, Providence, L.L., and Andersen, O.S. Modulation of gramicidin channel structure and function by the aliphatic “spacer” residues 10, 12 and 14 between the tryptophans. Biochemistry, 38, 1999, 1030-1039.
  • [26] Weiss, L.B. and Koeppe, R.E., II. Semisynthesis of linear gramicidins using diphenyl phosphorazidate (DPPA). Int. J. Pept. Protein Res. 26, 1985, 305-310.
  • [27] Mouritsen, O.G. and Bloom, M. Mattress model of lipid–protein interactions in membranes. Biophys. J. 46, 1984, 141-153.
  • [28] Killian, J.A., Salemink, I., De Planque,M.R., Lindblom, G., Koeppe, R.E., II, and Greathouse,D.V. Induction of non-bilayer structures in diacylphosphatidylcholine model membranes by 30 R.E. Koeppe II et al.transmembrane α-helical peptides. Importance of hydrophobic mismatch and proposed roleof tryptophans. Biochemistry 35, 1996, 1037-1045.
  • [29] Andersen, O.S. and Koeppe, R.E., II. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 2007, 107-130.
  • [30] Jordan, J.B., Shobana, S., Andersen, O.S., and Hinton, J.F. Effects of glycine substitutions on the structure and function of gramicidin A channels. Biochemistry 45, 2006, 14012-14020.
  • [31] Durkin, J.T., Koeppe, R.E., II, and Andersen, O.S. Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J. Mol. Biol., 211, 1990, 221-234.
  • [32] Durkin, J.T., Providence, L.L., Koeppe, R.E., II, and Andersen, O.S. Energetics of heterodimer formation among gramicidin analogues with an NH2-terminal addition or deletion: consequences of missing a residue at the join in the channel. J. Mol. Biol., 231, 1993, 1102-1121.
  • [33] Sun, H. Applications of Gramicidin Channels: I. Function of Tryptophan at the Membrane/Water Interface. II. Molecular Design of Membrane-Spanning Force Transducers. Ph.D. Thesis, University of Arkansas (2003).
  • [34] Fonseca, V., Daumas, P., Ranjalahy Rasoloarijao, L., Heitz, F., Lazaro, R., Trudelle, Y., and Andersen, O.S. Gramicidin channels that have no tryptophan residues. Biochemistry, 31, 1992, 5340-5350.
  • [35] Lundbæk, J.A. and Andersen, O.S. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys. J. ,76, 1999, 889-895.
  • [36] Miloshevsky, G. and Jordan, P. The open state gating mechanism of gramicidin a requires relative opposed monomer rotation and simultaneous lateral displacement. Structure 14, 2006, 1241-1249.
  • [37] Goforth, R.L., Chi, A.K., Greathouse, D.V., Providence, L.L., Koeppe, R.E., II, and Andersen, O.S. Hydrophobic coupling of lipid bilayer ene to channel function. J. Gen. Physiol. 121, 2003, 477-493.
  • [38] Huang, H.W. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1986, 1061-1070.
  • [39] Nielsen, C., Goulian, M., and Andersen, O.S. Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1998, 1966-1983.
  • [40] Lundbæk, J.A., Maer, A.M., and Andersen, O.S. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry 36, 1997, 5695-5701.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-9b9e0d42-b405-4a24-97c8-36c367e2d671
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.