PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2017 | 4 | 1 | 56-61
Article title

Zastosowanie przezczaszkowej stymulacji prądem stałym w układzie wzrokowym

Content
Title variants
EN
Application of transcranial direct current stimulation in the visual system
Languages of publication
PL
Abstracts
EN
The visual system may undergo both induced and spontaneous neuroplastic changes. Transcranial direct current stimulation is a method that allows direct modulation of the excitability of the cerebral cortex in humans and animals. Results from studies demonstrated beneficial effects of the method in the modulation of the excitability of occipital cortex of the brain. The use of transcranial stimulation enables improvement of visual functions, including enhanced quality of vision in amblyopia and stereoscopic vision. This article aims to characterize the method as adjunctive therapy, indicating its application in the treatment of the visual system.
PL
System wzrokowy może ulegać zmianom neuroplastycznym – zarówno indukowanym, jak i spontanicznym. Przezczaszkowa stymulacja prądem stałym jest metodą umożliwiającą bezpośrednią modulację pobudliwości kory mózgowej u ludzi oraz zwierząt. Badania wykazały skuteczność tej metody w modulacji pobudliwości korowej w obrębie kory potylicznej mózgu. Wykorzystanie przezczaszkowej stymulacji prądem stałym umożliwia poprawę funkcji wzrokowych, np. jakości widzenia w niedowidzeniu czy widzenia stereoskopowego. Celem artykułu jest scharakteryzowanie tej metody jako narzędzia w terapii wspomagającej układ wzrokowy oraz wskazanie jej zastosowań w terapii widzenia.
Discipline
Publisher

Journal
Year
Volume
4
Issue
1
Pages
56-61
Physical description
Contributors
  • Pracownia Fizyki Widzenia i Optometrii, Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu
References
  • 1. Antal A, Polania R, Schmidt-Samoa C, et al. Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage 2011; 55: 590-596.
  • 2. Stagg CJ, Nitsche MA. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011; 17: 37-53.
  • 3. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1991; 1: 1-47.
  • 4. Tootell RB, Dale AM, Sereno MI, Malach R. New images from human visual cortex. Trends Neurosci 1996; 19: 481-489.
  • 5. Foerster O. Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol Neurol 1929; 39: 435-463.
  • 6. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937; 60: 389-443.
  • 7. Penfield W, Rasmussen T. The cerebral cortex of man. 4th ed. Macmillan, New York 1950.
  • 8. Brindley GS, Lewin WS. The visual sensations produced by electrical stimulation of the medial occipital cortex. J Physiol 1968; 194: 54-55P.
  • 9. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980; 285(5762): 227.
  • 10. Cuypers K, Leenus DJF, van den Berg FE, et al. Is Motor Learning Mediated by tDCS Intensity? PLoS One 2013; 8(6): e67344.
  • 11. Antal A, Nitsche M, Paulus W. External modulation of visual perception. Neuroreport 2001; 12: 3553-3555.
  • 12. Antal A, Nitsche M, Kincses T, et al. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 2004; 19(10): 2888-2892.
  • 13. Antal A, Nitsche M, Kruse W, et al. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 2004; 16: 521-527.
  • 14. Kraft A, Roehmel J, Olma M, et al. Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 2010; 207: 283-290.
  • 15. Antal A, Kincses T, Nitsche M, Paulus W. Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 2003; 41: 1802-1807.
  • 16. Antal A, Kincses Z, Nitsche M, Paulus W. Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res 2003; 150: 375-378.
  • 17. Sczesny-Kaiser M, Beckhaus K, Dinse HR, et al. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects – A Pilot Study. Front Behav Neurosci 2016; 10: 116.
  • 18. Holmes JM, Clarke MP. Amblyopia. Lancet 2006; 367: 1343-1351.
  • 19. Sengpiel F, Jirmann KU, Vorobyov V, Eysel UT. Strabismic suppression is mediated by inhibitory interactions in the primary visual cortex. Cereb Cortex 2006; 16: 1750-1758.
  • 20. Hess RF, Mansouri B, Thompson B. Restoration of binocular vision of amblyopia. Strabismus 2011; 19: 110-118.
  • 21. Birch EE. Amblyopia and binocular vision. Prog Retin Eye Res 2013; 33: 67-84.
  • 22. Narasimhan S, Harrison E, Giaschi D. Quantitative measurement of interocular suppression in children with amblyopia. Vision Res 2012; 66: 1-10.
  • 23. Epelbaum M, Milleret C, Buisseret P, Dufier J. The sensitive period for strabismic amblyopia in humans. Ophthalmology 1993; 100: 323-327.
  • 24. Maya-Vetencourt JF, Baroncelli L, Viegi A, et al. IGF-1 restores visual cortex plasticity in adult life by reducing local GABA levels. Neural Plas 2012; 2012: 250421.
  • 25. He HY, Hodos W, Quinlan EM. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J Neurosci 2006; 26: 2951-2955.
  • 26. Harauzov A, Spolidoro M, Dicristo G, et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 2010; 30: 361-371.
  • 27. Sale A, Maya-Vetencourt JF, Medini P. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 2007; 10: 679-681.
  • 28. Sale A, Berardi N, Spolidoro M, et al. GABAergic inhibition in visual cortical plasticity. FrontCell Neurosci 2010; 4: 10.
  • 29. Knox P, Simmers A, Gray L, Cleary M. An exploratory study: prolonged periods of binocular stimulation can providean effective treatment for childhood amblyopia. Invest Ophthalmol Vis Sci 2012; 53: 817-824.
  • 30. To L, Thompson B, Blum J, et al. A game platform for treatment of amblyopia. IEEE Trans Neural Syst Rehabil Eng 2011; 19(3): 280- 289.
  • 31. Spiegel DP, Li J, Hess RF, et al. Transcranial Direct Current Stimulation Enhances Recovery of Stereopsis in Adults With Amblyopia. Neurotherapeutics 2013; 10: 831-839.
  • 32. Ding Z, Li J, Spiegel DP, et al. The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Sci Rep 2016; 6: 19280.
  • 33. Plow E, Obretenova S, Halko M, et al. Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study. PM R 2011; 3(9): 825-835.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-9b61c8f4-e844-4a50-9921-f4e7a41467c1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.