Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 75-88

Article title

THE EFFECT OF A COMPOSITE CHITOSAN-SILVER(I) ION COATING ON THE CORROSION RESISTANCE OF THE COBALT-CHROMIUM-MOLYBDENUM ALLOY IN SALINE SOLUTION

Content

Title variants

Languages of publication

EN

Abstracts

EN
We determined the in vitro corrosion resistance of the composite chitosan-silver(I) [Ag(I)] ion coating on the cobalt-chromium-molybdenum (CoCrMo) dental alloy in a 0.9% sodium chloride (NaCl) solution at 37°C. We obtained the novel composite chitosan–Ag(I) ion coating by electrophoretic deposition at 20 V for 30 s at room temperature in a 2% (v/v) aqueous solution of acetic acid with 1 g dm–3 chitosan and 10 g dm–3 silver nitrate. We evaluated the chemical composition with energy dispersive spectroscopy and Fouriert-ransform infrared spectroscopy. We investigated surface topography and electronic properties with a scanning Kelvin probe. We determined the mechanism and kinetics of the electrochemical corrosion of the obtained coatings by electrochemical impedance spectroscopy. The Ag content in the composite chitosan–Ag(I) ion coating was 1.9 ± 1 wt.%. The cataphoretic co-deposition of chitosan and Ag(I) ions in an aqueous solution can be used to modify the CoCrMo alloy surface to obtain new coatings with antibacterial properties.

Year

Volume

28

Pages

75-88

Physical description

Contributors

  • Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
author
  • Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland
  • Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A Str., 41–500 Chorzów, Poland

References

  • [1] Najman S, Mitić V, Groth T, Barbeck M, Chen P-Y, Sun Z, Randjelović B; (2023) Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. 1st ed, Springer Nature Switzerland AG, Cham.
  • [2] Motoyoshi M; (2022) Current Techniques and Materials in Dentistry. MDPI AG, Basel.
  • [3] Givan DA; (2014) Precious metal alloys for dental applications. In: Baltzer N, Copponnex T (eds), Precious Metals for Biomedical Applications. Woodhead Publishing, Cambridge, 109–129. DOI:10.1533/9780857099051.2.109
  • [4] Sinyakova EF, Vasilyeva IG, Oreshonkov AS, Goryainov SV, Karmanov NS; (2022) Formation of noble metal phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the process of fractional crystallization of the CuFeS2 melt. Minerals 12, 1136. DOI:10.3390/min12091136
  • [5] Rudolf R, Lazic V, Majeric P, Ivanic A, Kravanja G, Raic K; (2022) Dental Gold Alloys and Gold Nanoparticles for Biomedical Applications. Springer Nature Switzerland AG, Cham.
  • [6] Osak P, Maszybrocka J, Kubisztal J, Łosiewicz B; (2022) Effect of amorphous calcium phosphate coatings on tribological properties of titanium grade 4 in protein-free artificial saliva. Biotribology 32, 100219. DOI:10.1016/j.biotri.2022.100219
  • [7] Osak P, Maszybrocka J, Zubko M, Rak J, Bogunia S, Łosiewicz B; (2021) Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications. Materials 14, 7536. DOI:10.3390/ma14247536
  • [8] Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Bogunia S, Ratajczak P, Aniołek K; (2021) Effect of temperature on electrochemically assisted deposition and bioactivity of CaP coatings on CpTi grade 4. Materials 14, 5081. DOI:10.3390/ma14175081
  • [9] Osak P, Maszybrocka J, Kubisztal J, Ratajczak P, Łosiewicz B; (2021) Longterm assessment of the in vitro corrosion resistance of biomimetic ACP coatings electrodeposited from an acetate bath. J Funct Biomater 12, 12. DOI:10.3390/jfb12010012
  • [10] Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Stach S; (2020) Effect of autoclaving time on corrosion resistance of sandblasted Ti G4 in artificial saliva. Materials 13, 4154. DOI:10.3390/ma13184154
  • [11] Primozic J, Hren M, Mezeg U, Legat A; (2022) Tribocorrosion susceptibility and mechanical characteristics of as-received and long-term in-vivo aged nickel-titanium and stainless-steel archwires. Materials 15, 1427. DOI:10.3390/ma15041427
  • [12] Achitei DC, Baltatu MS, Vizureanu P, Sandu AV, Benchea M, Istrate B; (2022) Ni-Cr alloys assessment for dental implants suitability. Appl Sci 12, 12814. DOI:10.3390/app122412814
  • [13] Dudek K, Dulski M, Łosiewicz B; (2020) Functionalization of the NiTi shape memory alloy surface by HAp/SiO2/Ag hybrid coatings formed on SiO2-TiO2 glass interlayer. Materials 13, 1648. DOI:10.3390/ma13071648
  • [14] Osak P, Łosiewicz B; (2018) EIS study on interfacial properties of passivated Nitinol orthodontic wire in saliva modified with Eludril® mouthwash. Prot Met Phys Chem Surf 54(4), 680–688. DOI:10.1134/S2070205118040226
  • [15] Freitag M, Łosiewicz B, Goryczka T, Lelątko J; (2012) Application of EIS to study the corrosion resistance of passivated NiTi shape memory alloy in simulated body fluid. Solid State Phenom 183, 57–64. DOI:10.4028/www.scientific.net/SSP.183.57
  • [16] Lelątko J, Goryczka T, Wierzchoń T, Ossowski M, Łosiewicz B, Rówiński E, Morawiec H; (2010) Structure of low temperature nitrided/oxidized layer formed on NiTi shape memory alloy. Solid State Phenom 163, 127–130. DOI:10.4028/www.scientific.net/ssp.163.127
  • [17] Łosiewicz B, Skwarek S, Stróż A, Osak P, Dudek K, Kubisztal J, Maszybrocka J; (2022) Production and characterization of the third-generation oxide nanotubes on Ti-13Zr-13Nb alloy. Materials 15, 2321. DOI:10.3390/ma15062321
  • [18] Aniołek K, Łosiewicz B, Kubisztal J, Osak P, Stróż A, Barylski A, Kaptacz S; (2021) Mechanical properties, corrosion resistance and bioactivity of oxide layers formed by isothermal oxidation of Ti-6Al-7Nb alloy. Coatings 11, 505. DOI:10.3390/coatings11050505
  • [19] Łosiewicz B, Stróż A, Osak P, Maszybrocka J, Gerle A, Dudek K, Balin K, Łukowiec D, Gawlikowski M, Bogunia S; (2021) Production, characterization and application of oxide nanotubes on Ti–6Al–7Nb alloy as a potential drug carrier. Materials 14, 6142. DOI:10.3390/ ma14206142
  • [20] Stróż A, Dercz G, Chmiela B, Łosiewicz B; (2019) Electrochemical synthesis of oxide nanotubes on biomedical Ti13Nb13Zr alloy with potential use as bone implant. AIP Conf Proc 2083, 030004. DOI:10.1063/1.5094314
  • [21] Stróż A, Łosiewicz B, Zubko M, Chmiela B, Balin K, Dercz G, Gawlikowski M, Goryczka T; (2017) Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater Charact 132, 363–372. DOI:10.1016/j.matchar.2017.09.004
  • [22] Stróż A, Dercz G, Chmiela B, Stróż D, Łosiewicz B; (2016) Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys Pol 130, 1079–1080. DOI:10.12693/APhysPolA.130.1079
  • [23] Smołka A, Dercz G, Rodak K, Łosiewicz B; (2015) Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution. Arch Metall Mater 60(4), 2681–2686. DOI:10.1515/amm-2015–0432
  • [24] Szklarska M, Dercz G, Simka W, Łosiewicz B; (2014) A.c. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution. Surf Interface Anal 46(10–11), 698–701. DOI:10.1002/sia.5383
  • [25] Smołka A, Rodak K, Dercz G, Dudek K, Łosiewicz B; (2014) Electrochemical formation of self-organized nanotubular oxide layers on Ti13Zr13Nb alloy for biomedical applications. Acta Phys Pol 125(4), 932–935. DOI:10.12693/APhysPolA.125.932
  • [26] Padrós R, Giner-Tarrida L, Herrero-Climent M, Punset M, Gil FJ; (2020) Corrosion resistance and ion release of dental prosthesis of CoCr obtained by CAD-CAM milling, casting and laser sintering. Metals 10, 827. DOI:10.3390/met10060827
  • [27] Uriciuc WA, Boșca AB, Băbțan AM, Vermeșan H, Cristea C, Tertiș M, Pășcuță P, Borodi G, Suciu M, Barbu-Tudoran L, Popa CO, Ilea A; (2022) Study on the surface of cobalt-chromium dental alloys and their behavior in oral cavity as cast materials. Materials 15, 3052. DOI:10.3390/ma15093052
  • [28] Kajzer W, Szewczenko J, Kajzer A, Basiaga M, Jaworska J, Jelonek K, Nowińska K, Kaczmarek M, Orłowska A; (2021) Physical properties of electropolished CoCrMo alloy coated with biodegradable polymeric coatings releasing heparin after prolonged exposure to artificial urine. Materials 14, 2551. DOI:10.3390/ma14102551
  • [29] Mace A, Khullar P, Bouknight C, Gilbert JL; (2022) Corrosion properties of low carbon CoCrMo and additively manufactured CoCr alloys for dental applications. Dent Mater 38(7), 1184–1193. DOI:10.1016/j.dental.2022.06.021
  • [30] Avcu E, Baştan FE, Abdullah HZ, Ur Rehman MA, Yıldıran Avcu Y, Boccaccini AR; (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci 103, 69–108. DOI:10.1016/j.pmatsci.2019.01.001
  • [31] Szulc M, Lewandowska K; (2023) Biomaterials based on chitosan and its derivatives and their potential in tissue engineering and other biomedical applications—a review. Molecules 28, 247. DOI:10.3390/molecules28010247
  • [32] Raafat D, Sahl HG; (2009) Chitosan and its antimicrobial potential - a critical literature survey. Microb Biotechnol 2(2), 186–201. DOI:10.1111/j.1751–7915.2008.00080.x
  • [33] Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales JD, Vázquez-Lepe M, Kovalenko Y, Sanchez IC, Luna-Bárcenas G; (2015) Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 67, 242–251. DOI:10.1016/j.eurpolymj.2015.03.066
  • [34] Jiang Wang-ZhanW.Z. WZ, Cai YangY. Y, Li Hao-YingH.Y. HY; (2017) Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol 312, 124–132. DOI:10.1016/j.powtec.2017.02.021
  • [35] Simchi A, Pishbin F, Boccaccini AR; (2009) Electrophoretic deposition of chitosan. Mater Lett 63(26), 2253–2256. DOI:10.1016/j.matlet.2009.07.046
  • [36] Szklarska M, Łosiewicz B, Dercz G, Maszybrocka J, Rams-Baron M, Stach S; (2020) Electrophoretic deposition of chitosan coatings on the Ti15Mo biomedical alloy from a citric acid solution. RSC Adv 10(23), 13386–13393. DOI:10.1039/d0ra01481h
  • [37] Kowalski P, Łosiewicz B, Goryczka T; (2015) Deposition of chitosan layers on NiTi shape memory alloy. Arch Metall Mater 60(1), 171–176. DOI:10.1515/amm-2015–0027
  • [38] Łosiewicz B, Dercz G, Szklarska M, Simka W, Łężniak M, Krząkała A, Swinarew A; (2013) Characterization of electrophoretically deposited chitosan coatings on Ti13Zr13Nb alloy for biomedical applications. Solid State Phenom 203–204, 212–215. DOI:10.4028/www.scientific.net/ssp.203–204.212
  • [39] Vokhidova NR, Ergashev KH, Rashidova SSh; (2022) Synthesis and application of chitosan hydroxyapatite: a review. Prog Chem Appl Chitin Deriv 27, 5–34. DOI:10.15259/PCACD.27.001
  • [40] Hasnain MS, Beg S, Nayak AK; (2021) Chitosan in Drug Delivery. 1st ed, Elsevier Science, Berlin, Germany.
  • [41] Nuc Z, Dobrzycka-Krahel A; (2021) From chitin to chitosan – a potential natural antimicrobial agent. Prog Chem Appl Chitin Deriv 26, 23–40. DOI:10.15259/PCACD.26.003
  • [42] Łosiewicz B, Popczyk M, Szklarska M, Smołka A, Osak P, Budniok A; (2015) Application of the scanning Kelvin probe technique for characterization of corrosion interfaces. Solid State Phenom 228, 369–382. DOI:10.4028/www.scientific.net/ssp.228.369
  • [43] ISO 10271:2021–02: Dentistry - Corrosion test methods for metallic materials.
  • [44] Lasia A; (2014) Electrochemical Impedance Spectroscopy and Its Applications. Springer, New York. DOI:10.1007/978–1-4614–8933–7
  • [45] Eco Chemie BV; (2001) User Manual for Frequency Response Analysis (FRA) for Windows Version 4.9. Eco Chemie BV, Utrecht.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-9aa1e7a7-2110-4b8e-a41c-cad7b87cfd18
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.