PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 37 | 232-248
Article title

XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the present paper, the passive layers' chemical compositions of AISI 316L austenitic stainless steel samples after three treatments, such as mechanical/abrasive polishing (MP), standard electropolishing (EP) and magnetoelectropolishing (MEP) are displayed. For the surface studies after each treatment, XPS analysis was performed. It has been noted that after MP treatment the Cr/Fe ratio in the passive layer is the lowest and equals to about 1, whereas after the MEP it is close to 3. Additionally, it has to be reported that the passive layers after MP consist mainly of Cr2O3 and Fe2O3, after a standard EP treatment – of CrOOH and FeOOH, and after MEP – of Cr(OH)3 and FeOOH compounds. Concerning the surface layer compositions, in the passive layer formed after MP the detected iron consisted partly of Fe0 (46.5 at %) and partly of iron compounds Fe2+ and Fe3+ (53.5 at %), whereas the detected chromium consisted of Cr0 (16.5 at %) and mostly of chromium compounds Cr3+ (80.8 at%), with a small amount of Cr6+ (2.7 at %). In case of the nanolayer after EP treatment, the detected iron consisted of Fe0 (39.5 at %) and iron compounds Fe2+ and Fe3+ (60.5 at %), whereas the detected chromium consisted in a small amount of Cr0 (6.6 at %), and mostly chromium compounds Cr3+ (83.8 at %) with some Cr6+ (9.6 at %). The XPS analysis of nanolayer formed on AISI 316L after MEP indicates that the detected iron consisted partly of Fe0 (27.1 at %) and mostly of iron compounds Fe2+ and Fe3+ (72.9 at %) whereas the detected chromium contained Cr0 (18 at %) and chromium compounds of Cr3+ (76 at %) and Cr6+ (6 at %).
Year
Volume
37
Pages
232-248
Physical description
Contributors
  • Division of Surface Electrochemistry and Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl
  • Division of Surface Electrochemistry and Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl
References
  • [1] Kułakowska A, Kukiełka L, Numerical analysis and experimental researches of burnishing rolling process with taking into account deviations in the surface asperities outline after previous treatment. Steel Research International, 2 (2008) 42-48.
  • [2] Kułakowska A, Problems of surface preparation under Burnishing rolling in aspect of product quality. Steel Research International, 81/9 (2010) 218-221.
  • [3] Kułakowska A, Experimental Researches of Burnishing Rolling Process of Regular Surface Asperities Prepared in Turning Process. Steel Research International, Special Edition: 14th International Conference on Metal Forming (2012) 127-131.
  • [4] Kukiełka L, Kukiełka K, Kułakowska A, Patyk R, Malag L, Bohdal L, Incremental Modelling and Numerical Solution of the Contact Problem between Movable Elastic and Elastic/Visco-Plastic Bodies and Application in the Technological Processes. Applied Mechanics and Materials Novel Trends in Production Devices and Systems, Editors: Karol Velíšek, Peter Košťál and Milan Nad, 2014, USA-Slovakia, 2014, pp. 159-165. ISSN 1662-7482.
  • [5] Kukiełka K, Kukiełka L, Bohdal Ł, Kułakowska A, Maląg L, Patyk R, 3D Numerical Analysis the State of Elastic/Visco-Plastic Strain in the External Round Thread Rolled on Cold. Applied Mechanics and Materials Novel Trends in Production Devices and Systems, Editors: Karol Velíšek, Peter Košťál and Milan Nad, 2014, USA-SLOVAKIA, pp. 436-441. ISSN 1662-7482.
  • [6] Kukiełka L, Kułakowska A, Patyk R, Numerical modeling and simulation of the movable contact tool-worpiece and application in technological processes. Journal of Systemics, Cybernetics and Informatics, Orlando, Floryda (2009) 57-62.
  • [7] Rokosz K, Hryniewicz T, Malorny W, Valiček J, Harničárová M, ANSYS analysis of stress and strain after cones plastic deformation. Technical Gazette, 22(2) (2015) 503-508.
  • [8] Kułakowska A, Bohdal Ł, Kukiełka L, Kukiełka K, Maląg L, Patyk R, Possibility of Steering of Product Surface Layers Properties in Burnishing Rolling Process. Applied Mechanics and Materials, Novel Trends in Production Devices and Systems, Editors: Karol Velíšek, Peter Košťál and Milan Nad, 2014, USA-SLOVAKIA, ISSN 1662-7482.
  • [9] Kułakowska A, Bohdal Ł, Patyk R, Application of burnishing process in creating environmental product. Annual Set The Environment Protection, 16 (2014), ISSN 1506-218X.
  • [10] Patyk R, Kułakowska A, Bohdal Ł, Environmental, Economic and Exploitation Aspects of the Use of Burnishing Rolling Treatments. Annual Set The Environment Protection, 16 (2014), ISSN 1506-218X.
  • [11] Bohdal Ł, Kułakowska A, Patyk R, Analysis of slitting of aluminium body panels in the aspect of scrap reduction. Annual Set The Environment Protection, 16 (2014), ISSN 1506-218X.
  • [12] Simka W, Sadowski A, Warczak M, Iwaniak A, Dercz G, Michalska J, Maciej A, Modification of titanium oxide layer by calcium and phosphorus. Electrochemical Acta, 56(24) (2011) 8962-8968.
  • [13] Jin F Y, Tong H H, Shen L R, Wang K, Chu P K, Micro-structural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization. Materials Chemistry and Physics, 100(1) (2006) 31-33.
  • [14] Chung C J, Su R T, Chu H J, Chen H T, Tsou H K, He J L, Plasma electrolytic oxidation of titanium and improvement in osseointegration. Journal of Biomedical Materials Research. B - Applied Biomaterials, 101(6) (2013) 1023-1030.
  • [15] Sowa M, Kazek-Kęsik A, Socha R P, Dercz G, Michalska J, Simka W, Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochimica Acta, 114 (2013) 627-636.
  • [16] Sowa M, Kazek-Kęsik A, Krząkała A, Socha R P, Dercz G, Michalska J, Simka W, Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions. Journal of Solid State Electrochemistry, 18(1) (2014) 3129-3142.
  • [17] Simka W, Sowa M, Socha R P, Maciej A, Michalska J, Anodic oxidation of zirconium in silicate solutions. Electrochemical Acta, 104 (2013) 518-525.
  • [18] Kazek-Kęsik A, Krok-Borkowicz M, Jakobik-Kolon A, Pamuła E, Simka W, Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part I. Surface and Coatings Technology, 276 (2015) 59-69.
  • [19] Kazek-Kęsik A, Krok-Borkowicz M, Jakóbik-Kolon A, Pamuła E, Simka W, Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part II. Surface and Coatings Technology, 276 (2015) 23-30.
  • [20] Simka W, Nawrat G, Chlode J, Maciej A, Winiarski A, Szade J, Radwanski K, Gazdowicz J, Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysł Chemiczny, 90(1) (2011) 84-90.
  • [21] Walsh F C, Low C T J, Wood R J K, Stevens K T, Archer J, Poeton A R, Ryder Y, Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of The Institute of Metal Finishing, 87(3) (2009) 122-135.
  • [22] Yerokhin A L, Nie X, Leyland A, Matthews A, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surface and Coatings Technology, 130(2-3) (2000) 195-206.
  • [23] Rokosz K, Hryniewicz T, Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials. World Scientific News, 35 (2016) 44-61.
  • [24] Rokosz K, Hryniewicz T, Dudek Ł, Malorny W, SEM and EDS analysis of Nitinol surfaces treated by Plasma Electrolytic Oxidation. Advances in Materials Science, 15(3) (2015) 41-47.
  • [25] Rokosz K, Hryniewicz T, Characteristics of porous and biocompatible coatings obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma Electrolytic Oxidation, Mechanik, 12 (2015) 15-18; DOI: 10.17814/mechanic.2015.12.530
  • [26] Rokosz K, Hryniewicz T, Raaen S, Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. The International Journal of Advanced Manufacturing Technology, 2015; DOI: 10.1007/s00170-015-8086-y
  • [27] Hryniewicz T, Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), 1989, Monograph no. 26, Koszalin University of Technology Publishing; 161 pages.
  • [28] Hryniewicz T, On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), 2007, Koszalin University of Technology Publishing; 155 pages.
  • [29] Rokosz K, Electrochemical Polishing in a magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), 2012, Koszalin University of Technology Publishing; 211 pages.
  • [30] Hryniewicz T, Rokicki R, Rokosz K, Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments. Surface and Coatings Technology, 62(17-18) (2008) 3073-3076.
  • [31] Hryniewicz T, Rokosz K, Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surface and Coatings Technology, 204(16-17) (2010) 2583-2592.
  • [32] Rokicki R, Haider W, Hryniewicz T, Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells. Journal of Materials Science: Materials in Medicine, 23(2) (2012) 2127-2139.
  • [33] Hryniewicz T, Concept of microsmoothing in the electropolishing. Surface and Coatings Technology, 64(2) (1994) 75-80.
  • [34] Rokicki R, Hryniewicz T, Enhanced oxidation-dissolution theory of electropolishing. Transactions of The Institute of Metal Finishing, 90(4) (2012) 188-196.
  • [35] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing. Advances in Materials Science, 15(1) (2015) 21-29; DOI: 10.1515/adms-2015-0004
  • [36] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332.
  • [37] Hryniewicz T, Rokicki R, Rokosz K, Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology, 203(9) (2008) 1508-1515.
  • [38] Hryniewicz T Rokosz K, Polarization characteristics of magnetoelectropolishing stainless steels. Materials Chemistry and Physics, 122(1) (2010) 169-174.
  • [39] Rokosz K, Hryniewicz T, Raaen S, Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters. Journal of Iron and Steel Research, 83(9) (2012) 910-918.
  • [40] Hryniewicz T, Rokosz K, Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Materials Chemistry and Physics, 123(1) (2010) 47-55.
  • [41] Hryniewicz T, Rokosz K, Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
  • [42] Hryniewicz T, Rokosz K, Valiček J, Rokicki R, Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Materials Letters, 83 (2012) 69-72.
  • [43] Hryniewicz T, Rokosz K, Rokicki R, Prima F, Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8 (2015) 205-215.
  • [44] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolished titanium biomaterial, in Biomaterials Science and Engineering, Chapter 11, ed. by Rosario Pignatello, 2011, pp. 227-248, available at: www.intechweb.org/; wwwintechopen.com/articles/show/title/magnetoelectropolished-titanium-biomaterial.
  • [45] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surface and Interface Analysis, 47(1) (2015) 87-92.
  • [46] Rokosz K, Hryniewicz T, Valiček J, Harničarova M, Vylezik M, Nanoindentation measurements of AISI 316L biomaterial samples after annual immersion in Ringer’s solution followed by electrochemical polishing in a magnetic field. PAK (Measurement Automation and Monitoring), 58(5) (2012) 460-463.
  • [47] Hryniewicz T, Rokosz K, Filippi M, Biomaterial studies on AISI 316L stainless steel after Magnetoelectropolishing. Materials, 2(1) (2009) 129-145.
  • [48] Hryniewicz T, Rokosz K, Rokicki R, Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field. Corrosion Science, 50(9) (2008) 2676-2681.
  • [49] Hryniewicz T, Rokosz K, Rokicki R, Magnetic fields for electropolishing improvement: materials and systems. International Letters of Chemistry, Physics and Astronomy, 4 (2014) 98-108.
  • [50] Hryniewicz T, Rokosz K, Highlights in magnetoelectropolishing. Frontiers in Materials: Corrosion Research, 1(3) (2014) 1-7 (Inaugural Article); http://dx.doi.org/10.3389/fmats.2014.00003
  • [51] Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S, XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surface and Coatings Technology, 276 (2015) 516–520.
  • [52] Rokosz K, Hryniewicz T, Lukeš J, Šepitka J, Nanoindentation studies and modeling of surface layers on austenitic stainless steels by extreme electrochemical treatments, Surface and Interface Analysis, 2015, (wileyonlinelibrary.com) online; DOI 10.1002/sia.5758 (5 pages).
  • [53] Rokosz K, Hryniewicz T, Rzadkiewicz S, Raaen S, High-Current-Density Electropolishing (HDEP) of AISI 316L SS (EN 1.4404) Stainless Steel. Tehnicki Vjesnik-Technical Gazette, 22(2) (2015) 415-424; DOI: 10.17559/TV-20140722110711
  • [54] Rokosz K, Hryniewicz T, Rzadkiewicz S, XPS study of surface layer formed on AISI 316L SS after high-current-density electropolishing. Solid State Phenomena, 227 (2015) 155-158; DOI: 10.4028/www.scientific.net/SSP.227.167
  • [55] Wagner C D, Riggs W M, Davis L E, Moueler J E, Mullenberg G E (Eds.), Handbook of X-Ray Photoelectron, Spectroscopy, Perkin-Elmer, Minnesota, 1979.
  • [56] Crist B V, PDF Handbook of The Elements and Native Oxides - The Elements and Native Oxides, 2005.
  • [57] Wang Y, Asunskis D J, Sherwood P M A, Iron (II) Phosphate Fe3(PO4)2 by XPS. Surface Science Spectra, 9(1-4) (2002) 91-98.
  • [58] Wang Y, Sherwood P M A, Iron (III) Phosphate (FePO4) by XPS. Surface Science Spectra, 9(1-4) (2002) 99-105.
  • [59] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart, R, St. C, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257 (2011) 2717-2730.
  • [60] Grosvenor A P, Kobe B A, Biesinger M C, McIntyre N S, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12) (2004) 1564-1574.
  • [61] Biesinger M C, Brown C, Mycroft J R, Davidson R D, McIntyre N S, X-ray photoelectron spectroscopy studies of chromium compounds. Surface and Interface Analysis, 36(12) (2004) 1550-1563.
  • [62] http://www.casaxps.com
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-98e12b12-03ba-4dba-b844-2b4fe4682795
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.