Preferences help
enabled [disable] Abstract
Number of results
2021 | 152 | 1-14
Article title

Numerical Predictions for Rising Water Levels in the Oceans

Title variants
Languages of publication
Global warming is an important and popular subject across global communities and in a wide array of literature. Global weather patterns are becoming more violent with an increase in the number of catastrophic events. The fundamental concepts of climate are strongly related to the natural freezers on planet Earth. Global warming affects Earth’s natural ice freezers. The warming climate in the Arctic and Antarctic regions are causing an increase in the melting of glaciers, which in turn generates a rise in ocean levels. The rising water levels are causing major regional problems in coastal areas and more importantly they are further accelerating global warming and extreme weather effects. This paper examines the long-term warming of the Arctic and Antarctic regions and the long-term rising water levels in the oceans, in addition to making predictions of these trends for the upcoming decades.
Physical description
  • University at Albany, Department of Epidemiology & Biostatistics, 1 University Place, Rensselaer, NY 12144, USA
  • George Mason University, Department of Mathematical Sciences, 4400 University Dr., Fairfax, VA 22030, USA
  • [1] Beckmann J, Perrette M, Beyer S, Calov R, Willeit M & Ganopolski A. (5 Sept 2019). Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line-plume model. The Cryosphere 13: 2281-2301.
  • [2] Close B, Zurbenko I, Sun M (2018). kza: Kolmogorov-Zurbenko Adaptive Filters. R package version 4.1.0.
  • [3] Comiso JC, Parkinson CL, Markus T, Cavalieri DJ, & Gersten R. Current State of Sea Ice Cover.
  • [4] Comiso JC, Meier WN, & Gersten R. (2017). Variability and trends in the Arctic Sea ice cover: Results from different techniques. JGR Oceans Volume 122, Issue 8, Pages 6883-6900.
  • [5] Faezeh MN, Vieli A, Morten LA, Joughin I, Payne A, Edwards TL, Pattyn F, van de Wal RSW. (9 May 2013). Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497. P 235-238. Doi:10.1038/nature12068
  • [6] Griffiths S, Peltier WR. (2009) Modeling of Polar Ocean Tides at the Last Glacial Maximum: Amplification, Sensitivity, and Climatological Implications. Journal of Climate 22 (11): 2905-2924.
  • [7] Hathaway D (2015). The Solar Cycle. Living Reviews in Solar Physics 12 (4). DOI: 10.1007/lrsp-2015-4
  • [8] Mackintosh, A., Anderson, B., Lorrey, A. et al. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nat Commun 8, 14202 (2017).
  • [9] Marchuk GI, & Kagan BA (1984). Ocean Tides and Numerical Models. Translated by Blinova EV & Yusina LYa. Peragmon Press Inc., Maxwell House, NY.
  • [10] Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame D, & Allen MR. (30 Apr 2009). Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458: 1158-1163. Doi:10.1038/nature08017
  • [11] National Climatic Data Center. National Oceanic and Atmospheric Administration. Global Historical Climatology Network Monthly Version 3. and
  • [12] National Climatic Data Center. National Oceanic and Atmospheric Administration. Global Summaries of the Month.
  • [13] National Oceanic and Atmospheric Administration Tides and Currents. Water Levels Service.
  • [14] Neagu, R & Zurbenko, I (2002) Tracking and separating non-stationary multi-component chirp signal. Journal of the Franklin Institute 339: 449-520
  • [15] Potrzeba-Macrina AL & Zurbenko IG (2017). Computational Aspects of Spectral Estimations and Periodicities in Irregularly Observed Data. Journal of Probability and Statistical Science 15 (2), p 233-246.
  • [16] Potrzeba-Macrina AL & Zurbenko IG (2019) Periods in Solar Activity. Advances in Astrophysics Vol 4, No 2, 47-60.
  • [17] Potrzeba-Macrina AL & Zurbenko, IG (2020). Numerical Predictions for Global Climate Changes. World Scientific News 144 (2020) 208-225
  • [18] Siegert M, Atkinson A, Banwell A, Brandon M, Convey P, Davies B, Downie R, Edwards T, Hubbard B, Marshall G, Rogelj J, Rumble J, Stroeve J & Vaughan D. (28 June 2019). The Antarctic Peninsula Under a 1.5°C Global Warming Scenario. Frontiers in Environmental Science Volume 7: Article 102. doi: 10.3389/fenvs.2019.00102
  • [19] Stephenson, FR & Clark, DH (1978). Applications of Early Astronomical Records. Monographs on Astronomical Subjects: 4. Oxford University Press, New York.
  • [20] WDC-SILSO, Royal Observatory of Belgium, Brussels. Sunspot Numbers:
  • [21] Valachovic E & Zurbenko I (2014). Skin Cancer, Irradiation, and Sunspots: The Solar Cycle Effect. Biomedical Research International. Vol 2014.
  • [22] Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg A. (15 Feb 2010). Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. Journal of Climate 23(4): 966-986
  • [23] Yang W, & Zurbenko I (2010). Kolmogorov-Zurbenko filters. WIREs Computational Statistics Vol 2: 340-351. DOI: 10.1002/wics.71
  • [24] Yang W, Zurbenko I (2012) KZFT package version 0.17, R-software first published version (19-Sept-2007) and latest published version (2012), Package Sources
  • [25] Zurbenko IG, Cyr DD (2011). Climate fluctuations in time and space. Climate Research Vol (46): 67-76. DOI 10.3354/cr00956
  • [26] Zurbenko IG, Cyr DD (2013). Climate fluctuations in time and space. Climate Research Vol (57): 93–94. doi: 10.3354/cr01168
  • [27] Zurbenko I, Luo M (2012) Restoration of Time-Spatial Scales in Global Temperature Data. American Journal of Climate Change 1: 154-163. doi:10.4236/ajcc.2012.13013
  • [28] Zurbenko I, Luo M (2015) Surface Humidity Changes in Different Temporal Scales. American Journal of Climate Change 4: 226-238
  • [29] Zurbenko, I.G & Porter, P.S (1998). Construction of high-resolution wavelets. Signal Processing Volume 65, Issue 2, Pages 315-327.
  • [30] Zurbenko, IG & Potrzeba, AL (2009) Tidal Waves in Atmosphere and Their Effects. Acta Geophysica, Vol 58 (2): 356-373. DOI 10.2478/s11600-009-0049-y
  • [31] Zurbenko, IG & Potrzeba, AL (2013) Tides in the Atmosphere. Air Quality, Atmosphere, & Health, Vol 6 (1): 39-46. DOI 10.1007/s11869-011-0143-6
  • [32] Zurbenko, IG & Potrzeba, AL (2013). Periods of Excess Energy in Extreme Weather Events. Journal of Climatology, Vol. 2013. Article ID 410898.
  • [33] Zurbenko IG & Potrzeba-Macrina AL (2019a). Solar Energy Supply Fluctuations to Earth and Climate Effects. World Scientific News 120 (2), 111-131
  • [34] Zurbenko, IG & Potrzeba-Macrina, AL (2019b). Analysis of Regional Global Climate Changes due to Human Influences. World Scientific News 132, 1-15
  • [35] Zurbenko IG, Smith D (2017). Kolmogorov-Zurbenko filters in spatiotemporal analysis. WIREs Computational Statistics, e1419. DOI: 10.1002/wics.1419
  • [36] Zurbenko, I.G. & Sun, M (2014). High Risk Periods in Tornado Outbreaks in Central USA. Advances in Research, 2 (8). DOI: 10.9734/AIR/2014/10247
  • [37] Zurbenko, I.G. & Sun, M (2015). Associations of Jet Streams with Tornado Outbreaks in the North America. Atmospheric and Climate Sciences, Vol. 5 (3), p. 336-344.
  • [38] Zurbenko, I.G. & Sun, M (2016). Jet Stream as a major factor of tornados in USA. Atmospheric and Climate Sciences, Vol. 6 (2), p. 236-253. DOI: 10.4236/acs.2016.62020
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.