Preferences help
enabled [disable] Abstract
Number of results
2015 | 20 | 18-33
Article title


Title variants
Languages of publication
Gold nanoparticles (AuNPs) were synthesized, in the absence of any reducing agent, using ionizing radiation or ultrasound in aqueous solutions of chloroauric acid (HAuCl4). Chitosan (average molecular weight 158 kDa, degree of deacetylation 90 %) was used as a stabilizing agent. Both techniques yielded AuNPs which were stable in solution at RT for at least 3 months after synthesis. UV-Vis spectroscopy was used to follow substrate decay, nanoparticles formation, size of the gold core and particles stability. Hydrodynamic radii and polydispersion of the chitozan-stabilized AuNPs (i.e. the whole core-shell nanoparticles) were determined by dynamic light scattering. Zeta potential measurements were performed to assess the surface charge and stability of the particles. Influence of synthesis parameters and presence of isopropanol on the formation and properties of the products have been described and reaction mechanisms have been discussed. Radiation and sonochemical methods are demonstrated to be very efficient, fast and easy-to-control methods of synthesizing gold nanoparticles, leaving behind no unreacted reducing agent or unwanted side products, while stabilization by chitosan provides AuNPs with excellent stability and long shelf life.

Physical description
  • Institute of Applied Radiation Chemistry, Faculty of Chemistry Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland,
  • Institute of Applied Radiation Chemistry, Faculty of Chemistry Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
  • Institute of Applied Radiation Chemistry, Faculty of Chemistry Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
  • Institute of Applied Radiation Chemistry, Faculty of Chemistry Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
  • 1. Louis C, Pluchery O; (2012) Gold nanoparticles for physics, chemistry and biology. Imperial College Press, London.
  • 2. Christine-Daniel M, Astruc D; (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104, 293-346. DOI: 10.1021/cr030698+
  • 3. Murugan M, Anthony K J P, Jeyaraj M, Rathinam N K R, Gurunathan S; (2014) Biofabrication of gold nanoparticles and its biocompatibility in human breast anenocarcinoma cells (MCF-7). J Ind Eng Chem 20, 1713-1719. DOI: 10.1016/j.jiec.2013.08.021
  • 4. Schäffler M, Sousa F, Wenk A, Sitia L, Hirn S, Schleh C, Haberl N, Violatto M, Canovi M, Andreozzi P, Salmona M, Bigini P, Kreyling W G, Krol S; (2014) Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 35 (10), 3455-3466. DOI: 10.1016/j.biomaterials.2013.12.100
  • 5. Cutler C S, Chanda N, Shukla R, Sisay N, Cantorias M, Zambre A, McLaughlin M, Kelsey J, Upenandran A, Robertson D, Deutscher S, Kannan R, Katti K; (2013) Nanoparticles and phage display selected peptides for imaging and therapy of cancer. Recent Res Cancer Res 194, 133-147.
  • 6. Cutler C S, Hennkens H M, Sisay N, Huclier-Markai S, Jurisson S S; (2013) Radiometals for combined imaging and therapy. Chem Rev 113, 858-883. DOI: 10.1021/cr3003104
  • 7. Doyen M, Bartik K, Bruylants G; (2013) UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: Observation of gold-citrate aggregates. J Colloid Interface Sci 399, 1-5. DOI: 10.1016/j.jcis.2013.02.040
  • 8. Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J; (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22, 1257-1265.
  • 9. Caruso R A, Ashokkumar M, Grieser F; (2002) Sonochemical formation of gold sols. Langmuir 18, 7831-7836. DOI: 10.1021/la020276f
  • 10. Okitsu K, Ashokkumar M, Grieser F; (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109, 20673-20675. DOI: 10.1021/jp0549374
  • 11. Sakai T, Enomoto H, Sakai H, Abe M; (2014) Hydrogen-assisted fabrication of spherical gold nanoparticles through sonochemical reduction of tetrachloride gold(III) ions in water. Ultrason Sonochem 21, 946–950. DOI: 10.1016/j.ultsonch.2013.12.010
  • 12. Spotheim-Maurizot M, Mostafavi M, Douki T, Rigny P; (2008) Radiation chemistry. From basics to applications in material and life sciences. EDP Sciences, Les Ulis.
  • 13. Dash M, Chiellini F, Ottenbrite R M, Chiellini E; (2011) Chitosan - a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36, 981-1014. DOI: 10.1016/j.progpolymsci.2011.02.001
  • 14. Croiser F, Jerome C; (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49, 780-792. DOI: 10.1016/j.eurpolymj.2012.12.009
  • 15. Hu L, Mao Z, Gao C; (2009) Colloidal particles for cellular uptake and delivery. J Mater Chem 19, 3108–3115. DOI: 10.1039/B815958K
  • 16. Wei D, Qian W; (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B 62, 136-142. DOI: 10.1016/j.colsurfb.2007.09.030
  • 17. Cazacu A, Bindar D, Tartau L, Hritcu L, Stefan M, Nita L, Ionescu C, Nica V, Rusu G, Dobromir M, Melnig V; (2011) Effect on nerve structures of functionalized gold-chitosan nanoparticles obtained by one pot synthesis. Ann Univ Iasi 12, 45–51.
  • 18. Vo K D N, Guillon E, Dupont L, Kowandy C, Coqueret X; (2014) Influence of Au(III) interaction with chitosan on gold nanoparticles formation. J Phys Chem C 118, 4465-4474. DOI: 10.1021/jp4112316
  • 19. Vo K D N, Kowandy C, Dupont L, Coqueret X, Hien N Q; (2014) Radiation synthesis of chitosan stabilized gold nanoparticles comparison between e- beam and  irradiation. Radiat Phys Chem 94, 84-87. DOI: 10.1016/j.radphyschem.2013.04.015
  • 20. Okitsu K, Mizukoshi Y, Yamamoto T A, Maeda Y, Nagata Y; (2007) Sonochemical synthesis of gold nanoparticle on chitosan. Mat Lett 61, 3429-3431. DOI: 10.1016/j.matlet.2006.11.090
  • 21. Rosiak J M, Ulanski P, Al-Assaf S; (2009) Protocol for determination of intrinsic viscosity of chitosan, IAEA Co-ordinated Research Programme: Development of Radiation-Processed Products of Natural Polymers for Application in Agriculture, Healthcare, Industry and Environment; International Atomic Energy Agency: Research Coordination Meeting, Reims, France, 201-221.
  • 22. ISO/ASTM51607-13. Standard Practice for Use of the Alanine-EPR Dosimetry System.
  • 23. Oh E, Susumu K, Goswami R, Mattoussi H; (2006) One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities. Langmuir 26, 7604–7613. DOI: 10.1021/la904438s
  • 24. Ulanski P, von Sonntag C; (2000) OH-radical-induced chain scission of chitosan in the absence and presence of dioxygen. J Chem Soc Perkin Trans 2 10, 2022-2028.
  • 25. Li T, Park H G, Choi S H; (2007) -Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mat Chem Phys 105, 325-330. DOI: 10.1016/j.matchemphys.2007.04.069
  • 26. von Sonntag C, Mark G, Tauber A, Schuchmann H P; (1999) OH radical formation and dosimetry in the sonolysis of aqueous solutions. Adv Sonochem 5, 109-145.
  • 27. Czechowska-Biskup R, Rokita B, Lotfy S, Ulanski P, Rosiak J M; (2005) Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr Polym 60, 175-184. DOI: 10.1016/j.carbpol.2004.12.001
  • 28. Czechowska-Biskup R, Rokita B, Ulanski P, Rosiak J M; (2005) Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity. Nucl Instr Meth Phys Res B 236, 383-390. DOI: 10.1016/j.nimb.2005.04.002
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.