Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 159 | 81-94

Article title

Multivariate Aspects of Global Warming

Content

Title variants

Languages of publication

EN

Abstracts

EN
It is well agreed upon that the global temperatures are trending upward, and Earth’s climate is impacted by these increasing temperatures. While there are regional differences to the impact of global climate change, there are evident effects globally. Fluctuations in solar energy delivered to Earth is a factor in Earth’s climate and temperature changes. The fluctuations in solar energy are a factor that cannot be changed. However, some of the influences on global climate changes are due to human contribution, which can be changed. The purpose of this paper is to review long-term fluctuations to global temperature change and their relationship and impact to other essential global variables. Some regional projections are used to present a view of effects of these findings. Real data analysis with separation of scales is intensively used to deliver all inferences.

Contributors

  • George Mason University, Department of Mathematical Sciences, 4400 University Dr., Fairfax, VA 22030, USA
  • University at Albany, Department of Epidemiology & Biostatistics, 1 University Place, Rensselaer, NY 12144, USA

References

  • [1] Active Cavity Radiometer Irradiance Monitor (ACRIM) www.acrim.com Accessed 2018.
  • [2] Barkhordarian A, Bhend J, von Storch H (2012). Consistency of observed near surface temperature trends with climate change projections over the Mediterranean region. Clim Dyn. 38: 1695-1702. DOI: 10.1007/s00382-011-1060-y
  • [3] Ezer T, Atkinson L, Corlett W, Blanco J (2013). Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. Journal of Geophysical Research: Oceans Vol 118: 685-697. DOI: 10.1002/jgrc.20091
  • [4] Fang X, Luo S, Lyu S (2019). Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960 – 2014. Theoretical and Applied Climatology. 135: 169-181. https://doi.org/10.1007/s00704-017-2337-9
  • [5] Frohlich C, Crommelynck D, Wehrli C, Anklin M, Dewitte S, Fichot A, Finsterle W, Jiménez A, Chevalier A, Roth HJ (1997) In-flight performances of VIRGO solar irradiance instruments on SOHO. Solar Physics Vol 175 (2): 267-286. doi:10.1023/A:1004929108864
  • [6] Hathaway, D (2015). The Solar Cycle. Living Reviews in Solar Physics. 12 (4). DOI: 10.1007/lrsp-2015-4
  • [7] Khanna J, Cook KH, Vizy EK (2020). Opposite spatial variability of climate change-induced surface temperature trends due to soil and atmospheric moisture in tropical/subtropical dry and wet land regions. International Journal of Climatology 40: 5887-5905. DOI: 10.1002/joc.6554
  • [8] National Climatic Data Center. National Oceanic and Atmospheric Administration. Global Historical Climatology Network Monthly Version 3. http://www.ncdc.noaa.gov/ghcnm and ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3
  • [9] Potrzeba-Macrina, AL & Zurbenko, IG (2019). Periods in Solar Activity. Advances in Astrophysics Vol 4, No 2, p 47-60. https://dx.doi.org/10.22606/adap.2019.42001
  • [10] Potrzeba-Macrina AL & Zurbenko, IG (2020). Numerical Predictions for Global Climate Changes. World Scientific News 144 (2020) 208-225
  • [11] Research Data Archive/Computational and Information Systems Laboratory/National Center for Atmospheric Research/University Corporation for Atmospheric Research, et al. 1984, updated monthly. International Comprehensive Ocean-Atmosphere Data Set (ICOADS) Release 2.5, Monthly Summaries. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6CF9N3F. Accessed† Jan 2021.
  • [12] Stephenson, FR & Clark, DH (1978). Applications of Early Astronomical Records. Monographs on Astronomical Subjects: 4. Oxford University Press, New York.
  • [13] Tsakiri K, Zurbenko I (2010). Prediction of Ozone Concentrations using Atmospheric Variables. Journal Air Quality, Atmosphere & Health Vol 4 (2): 111-120. DOI: 10.1007/s11869-010-0084-5
  • [14] Wang S, Wang Y (2019). Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations. Climate Dynamics. 53: 1613-1636. https://doi.org/10.1007/s00382-019-04702-7
  • [15] WDC-SILSO, Royal Observatory of Belgium, Brussels. Sunspot Numbers: http://www.sidc.be/silso/datafiles
  • [16] Yang W, & Zurbenko I (2010). Kolmogorov-Zurbenko filters. WIREs Computational Statistics Vol 2: 340-351. DOI: 10.1002/wics.71
  • [17] Yang W, Zurbenko I (2012) KZFT package version 0.17, R-software first published version (19-Sept-2007) and latest published version (2012), Package Sources https://cran.r-project.org/web/packages/kzft/kzft.pdf
  • [18] Zahradníček P, Brázdil R, Petr Š, Trnka M (2021). Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961 – 2019. International Journal of Climatology 41: 1211-1229. DOI: 10.1002/joc.6791
  • [19] Zurbenko IG, Cyr DD (2011) Climate fluctuations in time and space. Climate Research Vol 46: 67-76. DOI 10.3354/cr00956
  • [20] Zurbenko IG, Cyr DD (2013) Climate fluctuations in time and space. Climate Research Vol 57: 93–94. doi: 10.3354/cr01168
  • [21] Zurbenko, I, Luo M (2012). Restoration of Time-Spatial Scales in Global Temperature Data. American Journal of Climate Change, 1, 154-163. DOI: 10.4236/ajcc.2012.13013
  • [22] Zurbenko I, Luo M (2014). Temporal and spatial scales of global specific humidity. Engineering, 2014. DOI: 10.4236/eng.2014
  • [23] Zurbenko, I.G & Potrzeba, A.L (2009) Tidal Waves in Atmosphere and Their Effects. Acta Geophysica, Vol 58 (2): 356-373. DOI 10.2478/s11600-009-0049-y
  • [24] Zurbenko, I.G & Potrzeba-Macrina, A.L (2013) Periods of Excess Energy in Extreme Weather Events. Journal of Climatology, Vol 2013. DOI: 10.1155/2013/410898
  • [25] Zurbenko IG & Potrzeba-Macrina AL (2019a). Solar Energy Supply Fluctuations to Earth and Climate Effects. World Scientific News 120 (2), 111-131
  • [26] Zurbenko, IG & Potrzeba-Macrina, AL (2019b). Analysis of Regional Global Climate Changes due to Human Influences. World Scientific News 132 (2019): 1-15
  • [27] Zurbenko, IG & Potrzeba-Macrina, AL (2021). Numerical Predictions for Rising Water Levels in the Oceans. World Scientific News 152 (2021) 1-14
  • [28] Zurbenko, IG & Smith, D (2017). Kolmogorov-Zurbenko filters in spatiotemporal analysis. WIREs Comput Stat, e1419. DOI: 10.1002/wics.1419
  • [29] Zurbenko I, Smith D, Potrzeba-Macrina AL, Valachovic E, & Sun M (2021) High-Resolution Noisy Signal and Image Processing. Cambridge Scholars Publishing. ISBN 978-1-5275-6293-6
  • [30] Zurbenko I, Sowizral, M (1999) Resolution of the destructive effect on noise on linear regression of two time series. Far East Journal of Theoretical Statistics Vol 3 (1): 139-157.
  • [31] Zurbenko, IG & Sun, M (2014). High Risk Periods in Tornado Outbreaks in Central USA. Advances in Research, 2 (8). 426-440. DOI : 10.9734/AIR/2014/10247
  • [32] Zurbenko, IG & Sun, M (2015). Associations of Jet Streams with Tornado Outbreaks in the North America. Atmospheric and Climate Sciences, Vol. 5 (3), p. 336-344. http://dx.doi.org/10.4236/acs.2015.53026
  • [33] Zurbenko, IG & Sun, M (2016). Jet Stream as a major factor of tornados in USA. Atmospheric and Climate Sciences, Vol. 6 (2), p. 236 – 253. DOI: 10.4236/acs.2016.62020

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-95155969-9aae-40fd-a1ea-caaf62013663
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.