Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 40 | 104-119

Article title

Roles and Mechanisms of Docosahexaenoic Acid (DHA) in Neurodevelopment, Neuronal Functions, Learning and Memory

Content

Title variants

Languages of publication

EN

Abstracts

EN
Docosahexaenoic acid (DHA) is an omega-3 fatty acid which is a major constituent of the brain, retina and skin in terms of structure. DHA can be produced from the metabolic synthesis of alpha linolenic acid (ALA) or gotten from breast milk, fatty fishes, or oil from algae. Studies have shown that DHA is an essential nutrient for normal functioning of the brain. It is the major omega-3 fatty acid present in brain tissues and is known to have effects on neurotransmitters, synaptic transmission, and signal transduction. Also, certain DHA metabolites are biologically active molecules that protect the tissues from oxidative injury and stress. DHA is also known to carry out important membrane neuronal functions such as Phospholipid synthesis, membrane fluidity, neuronal survival, regulation of gene expression and modulation of enzyme activity in the brain. Therefore, DHA needs to be taken at developmental stages of human life such as period of pregnancy, lactation and even childhood for proper development and functioning of the brain.

Year

Volume

40

Pages

104-119

Physical description

Contributors

  • Department of Biochemistry, Covenant University, P.M.B 1023, Km 10, Idiroko Road, Canaanland, Ota, Ogun State, Nigeria
  • Department of Biochemistry, Covenant University, P.M.B 1023, Km 10, Idiroko Road, Canaanland, Ota, Ogun State, Nigeria
  • Department of Biochemistry, Covenant University, P.M.B 1023, Km 10, Idiroko Road, Canaanland, Ota, Ogun State, Nigeria

References

  • [1] A. Voss, M. Reinhart., S. Sankarappa and H. Sprecher. (October 1991). The metabolism of 7,10,13,16,19 docosapentaenoic acid to 4,7,10,13,16,19, docosahexaenoic acid in rat liver is independent of a 4-desaturase. The Journal of Biological Chemistry 266 (30): 19995–20000
  • [2] Abu, E.O. and Oluwatowoju, I. (2009). Omega-3 index determined by gas chromatography with electron impact mass spectrometry. Prostaglandins, Leukotrienes and Essential Fatty Acids, 80, 189-194
  • [3] Ackerman, S. (1992). Discovering the brain. Washington, D.C.: National Academy Press. pp. 22–25. ISBN 978-0-309-04529-2
  • [4] Aghini-Lombardi, F.A., Pinchera, A., Antonangeli, T., et al. (1995). Mild iodine deficiency during fetal/neonatal life and neuropsychological impairment in Tuscany. Journal of Endocrinological Investigation, 18: 57-72
  • [5] Akbar, M. and Kim, H.Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. Journal of Neurochemistry 82: 655-665
  • [6] Barcelo-Coblijn, G., Hogyes, E., Kitajka, K., Puskas, L. G., & Zvara, A. (2003). Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proceedings of National Academy of Sciences USA, 100:11321-11326
  • [7] Bazan, N.G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. Journal of Lipid Research, 44: 2221-2233
  • [8] Bazan, N.G. (2009) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins, Leukotrienes and Essential Fatty Acids,81: 205–211.
  • [9] Beard, J.L and Connor, J.R. (2003). Iron status and neural functioning. Annual Review of Nutrition, 23: 31–58
  • [10] Bradbury, J. (May 2011). Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients 3(5): 529-554. doi:10.3390/nu3050529
  • [11] Breckenridge, W., Gombos, G. and Morgan, I. G. (1972). The lipid composition of adult rat brain synaptosomal plasma membranes. Biochimica et Biophysica Acta, 266: 605-707
  • [12] Brown, T.T. and Jernigan, T.L. (2012). Brain development during the preschool years. Neuropsychology Review, 22: 313-333
  • [13] Burdge, G. C. and Wootton, S. A. (2002). Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. British Journal of Nutrition 88(4): 411– 420. doi:10.1079/BJN2002689
  • [14] Calderon, F. and Kim, H. Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. Journal of Neurochemistry, 90: 979-988
  • [15] Carver, J.D., Benford, V.J., Han, B. and Cantor, A.B. (2001). The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Research Bulletin, 56: 79–85
  • [16] Chalon, S. (2006) Omega-3 fatty acids and monoamine neurotransmission neurotransmission. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75: 259-269
  • [17] Chen, S. G., & Murakami, K. (1994). Effects of cis-fatty acids on protein kinase C activation and protein phosphorylation in the hippocampus. Journal of Pharmaceutical Science and Technology, 48: 71-75
  • [18] Chen, Z., Schwahn, B.C., Wu, Q., He, X. and Rozen, R. (2005). Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase. International Journal of Developmental Neuroscience, 23: 465-474
  • [19] Davey, G. (2011). Applied Psychology. John Wiley & Sons. p. 153. ISBN 978-1444331219
  • [20] De Caterina, R. and Basta, G. (June 2001). n-3 Fatty acids and the inflammatory response – biological background. European Heart Journal Supplements. 3 (Supplement D): D42–D49
  • [21] Denomme, J., Stark, K.D. and Holub, B.J. (2005). Directly quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women are lower than current dietary recommendations. Journal of Nutrition, 135: 206-211
  • [22] Facchinetti, F., Fazzio, M. and Venturini, P. (2005). Polyunsaturated fatty acids and risk of preterm delivery. European Review for Medical and Pharmacological Sciences, 9: 41-48
  • [23] Fan X, Markram H. A Brief History of Simulation Neuroscience. Front Neuroinform. 2019 May 7; 13: 32. doi: 10.3389/fninf.2019.00032
  • [24] Farooqui, A. A. (2010b). Modulation of neurotransmission signaling by neural membrane polyunsaturated fatty acids in Biogenic Amines:Pharmacological, Neurochemical, and Molecular Aspects in CNS, pp. 219-246, Nova Science Publishers Inc, Hauppauge, New York.
  • [25] Farooqui, A.A., Rosenberger, T.A.and Horrocks, L.A. (1997a). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In Handbook of Essential Fatty Acid Biology, ed. S Yehuda, DI Mostofsky, pp. 277–295. Totowa, NJ: Humana Press.
  • [26] Feller, S. E., Gawrisch, K., & Mac Kerell, A. D. (2002). Polyunsaturated fatty acids in a lipid bilayers: intrinsic and environmental contributions to their unique physical properties. Journal of the American Chemical Society, 124: 318-326
  • [27] Ferguson, S.A., Berry, K.J., Hansen, D.K., Wall, K.S., White, G. and Antony, A.C. (2005). Behavioral effects of prenatal folate deficiency in mice. Birth Defects. Part A: Clinical and Molecular Teratology, 4: 249-252
  • [28] Freberg, L. (2009). Discovering Biological Psychology. Cengage Learning, pp. 44–46. ISBN 978-0547177793
  • [29] Frick, K.M. and Fernandez, S.M. (2003). Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiology of Aging, 24: 615–626.
  • [30] Giltay, E.J., Gooren, L.J., Toorians, A.W., Katan, M.B. and Zock, P.L. (2004). Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. The American Journal of Clinical Nutrition 80(5): 1167-1174. doi:10.1093/ajcn/80.5.1167
  • [31] Grey A, Bolland M. Clinical Trial Evidence and Use of Fish Oil Supplements. JAMA Intern Med. 2014; 174(3): 460–462. doi:10.1001/jamainternmed.2013.12765
  • [32] Gross, C.G. (2000). Neurogenesis in the adult brain: Death of a dogma. Nature Reviews Neuroscience, 1:67-73
  • [33] Guesnet, P. and Alessandri, J.M. (2011). Docosahexaenoic acid (DHA) and the developing central nervous system (CNS). Implications for dietary recommend-dations. Biochimie 93 (1): 7-12. doi:10.1016/j.biochi.2010.05.005
  • [34] Hall. and John. (2011). Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia, PA: Saunders/Elsevier. ISBN 978-1-4160-4574-8.
  • [35] Harris, W.S. and Baack, M.L. (2015). Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. Journal of Perinatology 35(1): 1–7. doi:10.1038/jp.2014.195
  • [36] Helland, I.B., Smith, L., Saarem, K., et al. (2003). Maternal supplementation with very long chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics, 11: e39-44
  • [37] Hibbeln, J.R., Davis, J.M., Heron, J et al. (2003). Low dietary omega-3s and increased depression risk in 14,541 pregnancies. American Psychiatric Association Annual Meeting, San Francisco, CA, New Research Abstracts [Abstract NR418].
  • [38] Holland, B., Welch, A.A., Unwin, I.D., Buss, D.H., Paul, A.A. and Southgate, D.A.T. (1994). The composition of foods. Richard Clay Ltd Suffolk: 8-9.
  • [39] Holub, B. J. (1978). Differential utilization of 1-palmitoyl and 1-stearoyl homologues of various unsaturated 1,2-diacyl-sn-glycerols for phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver microsomes. Journal of Biological Chemistry, 253: 691-696
  • [40] Hüppi PS. Nutrition for the brain: commentary on the article by Isaacs et al. on page 308. Pediatr Res. 2008 Mar; 63(3): 229-31. doi: 10.1203/PDR.0b013e318168c6d1. PMID: 18287959
  • [41] Jones, C. R., Arai, T. and Rapoportm S, I. (1997). Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochemical Research, 22: 663-670
  • [42] Kandel, E.R., Schwartz, J.H. and Jessel, T.M. (2000). Principles of Neural Science. McGraw-Hill Professional. p. 324. ISBN 978-0-8385-7701-1
  • [43] Katakura, M., Hashimoto, M., Shahdat, H.M., et al. (2009). Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience, 19: 651–660
  • [44] Anas Husam Khalifeh. Omega-3 Fatty Acids as Complementary and Alternative Medicine for Depression: Literature Review. American Journal of Nursing Research. 2016; 4(3): 69-73. doi: 10.12691/ajnr-4-3-3
  • [45] Kim, H. Y., Spector, A. A. and Xiong, Z. M. (2011b). A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins and Other Lipid Mediators. 96: 114-120
  • [46] Kim HY. Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem. 2007 Jun 29; 282(26): 18661-5. doi: 10.1074/jbc.R700015200. Epub 2007 May 8. PMID: 17488715
  • [47] Kinsella, J. E., Shimp, J. L., Mai, J. and Weihrauch, J. (1977). Fatty acid content and composition of freshwater finfish. Journal of the American Oil Chemists’ Society, 54: 424-429
  • [48] Kolb, B. and Whishaw, I. (2009). Fundamentals of Human Neuropsychology. Macmillan. pp. 73–75. ISBN 978-0716795865
  • [49] Lavie, C.J., Milani, R.V., Mehra, M.R. and Ventura, H.O. 2009. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. Journal of the American College of Cardiology, 54 (7): 585-593
  • [50] Leaf, A. (2007). Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Journal of Cardiovascular Medicine, 8 Suppl 1: S27-29
  • [51] Lee, K.H., Kalikoglu, A., Ye, P., D’Ercole, A. J. (1997). Insulin-like growth factor-I (IGF-I) ameliorates and IGF binding protein-1 (IGFBP-1) exacerbates the effects of undernutrition on brain growth during early postnatal life: studies of IGF-I and IGFBP-1 transgenic mice. Pediatric Research, 45: 331–336
  • [52] Lengqvist, J., Mata de Urquiza, A., Bergman, A. C., Willson, T. M., & Sjovall, J. (2004). Polyunsaturated fatty acids including docosahexaenoic acid and arachidonic acid bind to retinoid X receptor alpha ligand-binding domain. Molecular and Cellular Proteomics, 3: 692-703
  • [53] Low, J.A. and Galbraith, R.S. (1974). Pregnancy characteristics of intrauterine growth retardation. Obstettrics and Gynecology, 44: 122–126
  • [54] Malone, J. and Patrick. (2012). The Systems Theory of Autistogenesis: Putting the Pieces Together. SAGE Open. 2(2): 215824401244428. doi:10.1177/2158244012-444281
  • [55] Martin, R. E. and Bazan, N. (1992). Changing fatty acids content of growth cone lipids prior to synaptogenesis. Journal of Neurochemistry, 59: 318-325
  • [56] Mata de Urquiza, A., Liu, S., Sjoberg, M., Zetterstrom, R., Griffiths, W., Sjovall, J., and Perlman, T. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 290: 2140-2144
  • [57] Merialdi, M., Caulfield, L.E., Zavaleta, N., Figueroa, A., Dominici, F. and Dipietro, J.A. (2004). Randomized controlled trial of prenatal zinc supplementation and the development of fetal heart rate. American Journal of Obstetrics and Gynecology,190: 1106–1112
  • [58] Mitchell, J.H., Nicol, F., Beckett, G.J and Arthur, J.R. (1998). Selenoprotein expression and brain development in preweanling selenium and iodine deficient rats. Journal of Molecular Endocrinology, 20: 203–210
  • [59] Morris, R., Anderson, E., Lynch, G. et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986). https://doi.org/10.1038/319774a0
  • [60] Mozzi, R., Buratta, S., and Goracci, G. (2003). Metabolism and function of phosphatidylserine in mammalian brain. Neurochemical Research, 28: 195-214
  • [61] Mukherjee, P.K., Marcheselli, V.L., Serhan, C.N. and Bazan, N.G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proceedings of National Academy of Sciences USA, 101: 8491–8496.
  • [62] Nagata, S. (1997). Apoptosis by death factor. Cell, 88: 355-365
  • [63] Netter, F. (2014). Atlas of Human Anatomy Including Student Consult Interactive Ancillaries and Guides (6th ed.). Philadelphia, Penn.: W B Saunders Co. p. 114. ISBN 978-1-4557-0418-7
  • [64] Nichizuka, Y. (1995). Protein kinase C and lipid signaling for sustained cellular responses. Federation of American Society for Experimental Biology Journal, 9: 484-496
  • [65] Nishijima M. Somatomedin-C as a fetal growth promoting factor and amino acid composition of cord blood in Japanese neonates. J Perinat Med. 1986; 14(3): 163-9. doi: 10.1515/jpme.1986.14.3.163. PMID: 3783387
  • [66] Olsen, S.F., Grandjean, P., Weing, P., et al. (1993). Frequency of seafood intake in pregnancy as a determinant of birth weight: evidence for a dose dependent relationship. Journal of Epidemiological Community Health, 47:436-40.
  • [67] Pocock, G. and Richards, C. (2006). Human Physiology: The Basis of Medicine (3rd ed.). Oxford: Oxford University Press. ISBN 978-0-19-856878-0.
  • [68] Prohaska, J.R. and Brokate, B. (2001). Dietary copper deficiency alters protein levels of rat dopamine beta-monooxygenase and tyrosine monooxygenase. Experimental Biology and Medicine (Maywood), 226: 199-207
  • [69] Prohaska, J.R. and Gybina, A.A. (2005). Rat brain iron concentration is lower following perinatal copper deficiency. Journal of Neurochemistry, 93: 698-705
  • [70] Dale Purves, George Augustine, David Fitzpatrick, William Hall, Anthony-Samuel Lamantia, Leonard White Neuroscience. 5th Edition. 2012. Sinauer Associates, Inc.: Sunderland, MA. ISBN: (Hardcover) 978-0878936953.
  • [71] Puskas, L.G., Kitajka, K., Nyakas, C., Barcelo-Coblijn, G. and Farkas, T. (2003). Short term administration of omega-3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proceedings of National Academy of Sciences USA, 100: 1580-1585.
  • [72] Qiu and Xiao (2003-02-01). Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins, Leukotrienes and Essential Fatty Acids. 68 (2): 181–186. doi:10.1016/S0952-3278(02)00268-5. PMID 12538082
  • [73] Rossi, E. and Costa, M. (1993). Fish oil derivatives as a prophylaxis of recurrent miscarriage associated with anti phospholipid antibodies (APL): a pilot study. Lupus, 2: 319-323.
  • [74] Salem, N., Litman, B. and Kim, H.Y. (2001). Mechanism of action of docosahexaenoic acid in the nervous system. Lipids, 36: 1-20
  • [75] Siddappa, A.M., Georgieff, M.K., Wewerka, S., Worwa, C., Nelson, C.A. and de-Regnier, R.A. (2004). Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatric Research, 55: 1034–1041
  • [76] Larry Squire, Darwin Berg, Floyd E. Bloom, Sascha du Lac, Anirvan Ghosh, Nicholas C. Spitzer. Fundamental Neuroscience. 4th Edition - November 6, 2012 eBook ISBN: 9780123858719
  • [77] Standring, Susan. (Ed). (2008). Gray's Anatomy: The Anatomical Basis of Clinical Practice (40th ed.). London: Churchill Livingstone. ISBN 978-0-8089-2371-8. p. 335-337.
  • [78] Standring, Susan. (Ed). (2008). Gray's Anatomy: The Anatomical Basis of Clinical Practice (40th ed.). London: Churchill Livingstone. ISBN 978-0-8089-2371-8. p. 227-229
  • [79] Suriah, A.R., Huah, T.S., Hassan, O. and Daud, N.M. 1995. Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54: 45-49
  • [80] Teague, W. E., Fuller, N. L., Rand, R. P., & Gawrisch, K. (2002). Polyunsaturated lipids in membrane fusion events. Cell and Molecular Biology Letters, 7: 262-264
  • [81] Thornberry, N.A. and Lazebnik, Y. (1998). Caspases: enemies within. Science 281: 1312–1316
  • [82] Yoshii, A. and Constantine-Paton, M. (2007). BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nature Neuroscience, 10: 702–711

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-945ecc8d-00df-4861-ade0-bea10f1a5df7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.