Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 38-44
Article title

Body composition of undergraduates – comparison of four different measurement methods

Title variants
Languages of publication
The objective of this study was to determine body composition of university students using four different methods and to find out the extent of agreement between these methods regarding the measurement of body fat percentage in body composition. The study group consisted of 52 students of the P.J. Šafárik University in Košice (29 males and 23 females) whose average age was 22.4 ± 1.9. The study group was formed by convenience sampling. Basic somatometric parameters (body height and weight) were determined and body mass index (BMI) was calculated. The body fat percentage was determined by indirect methods, that is by measuring skinfold thickness at 10 locations on the body using calliper Best II.K501 and by bioimpendance method using devices Bodystat 1500, Omron BF511 (tetra-polar electrode configuration) and Omron BF300 (bi-polar electrode configuration). Profile analysis based on one-sample Hotelling’s test with chi-squared approximation was used for assessing agreement among given four methods of body fat measurements. Statistical analysis of differences among methods was supplemented by the Bland-Altman graphical method with the Wilcoxon paired test. The whole statistical analysis was performed using Excel and software R. Hotteling’s Test (p < 2.2e-16) rejected the hypothesis of agreement between the methods. The greatest influence on this rejection was attributed to the Omron BF511 method. In addition, the results of Wilcoxon’s matched pairs test confirmed the difference of the Omron BF511 method from the other three measurement methods. Bland-Altman graphical analysis showed that the Omron BF511 provided clearly higher values in comparison to the three remaining measurement methods of body fat percentage. The skinfold measurement, the Omron BF300 and the Bodystat 1500 were almost identical. For all the indirect methods it is necessary to validate the accuracy of their measurements using reference methods for the current local population. The skinfold thickness measurement method by Pařízková meets this requirement. Based on our results, the values determined by the devices Omron BF300 and Bodystat 1500 can also be considered applicable. The Omron BF511 does not provide results that could be considered sufficiently accurate for the purposes of research. In order to verify this conclusion the larger group of probands (n = 100 - 300) and a method of repeated measurements would be necessary.
  • 1. Bunc V: Nadváha a obezita dětí-životní styl jako príčina a důsledek. In Česká kinantropologie, 2008; 12(3): 61-69
  • 2. Ferreira I, Twisk JWR, Mechelen W, Kemper HCG, Stehouwer CDA: Development of fatness, fitness, and lifestyle from adolescence to the age of 36 years: determinants of the metabolic syndrome in young adults: The Amsterdam Growth and Health Longitudinal Study. In Archives Internal Medicine, 2005; 165(1): 42-48
  • 3. Gutin B, Litaker M, Islam S, Manos T, Smith C, Treiber F: Body-composition measurement in 9- 11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. In Am J Clin Nutr, 1996; 63 (3): 287-92
  • 4. Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A, Schutz Y: Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects. In Nutrition, 2000; 16(4): 245-254
  • 5. Pařízková J: Rozvoj aktivní, telesné hmoty u dětí a mládeže. Praha SZN, 1962 [in Czech]
  • 6. Malá L, Malý T, Zahálka F, Teplan J: Dual-Energy X-Ray Absorpciometria-referenčná metóda určenia telesného zloženia a denzity kostí. In Česká kinantropologie, 2012; 16(3): 211-220
  • 7. Kinkorová I, Heller J: Využitelnost antropometrických parametru pro odhad tělesného složení u dětí. In Med Sport Boh Slov, 2007; 16(1): 40-47
  • 8. Větrovská R, Lačňák Z, Haluzíková D, Fábin P, Hájek P, Horák L, Haluzík M, Svačina Š, Matoulek M: Srovnání různých metod pro stanovení množství tuku v těle u žen s nadváho u a obezitou. In Vnitř Lék, 2009; 55(5): 455-461
  • 9. Pacy PL, Quevedo M, Gibson NR, Cox M, Koutedakis Z, Millward J: Body composition measurement in elite heavy weight oarswomen: a comparison of five methods. In J Sport Med Phys Fitness, 1995; 35: 67-74
  • 10. Pařízková J: Složení těla, metody měření a využití ve výzkumu a lékařské praxi. In Med Sport Boh Slov, 1998; 7(1): 1-6
  • 11. Pařízková J: K diskusi o rovnicích pro výpočet % depotního tuku. In Med Sport Boh Slov, 1998; 7(2): 54-55
  • 12. Pařízková J, Hainer V, Kunešová M: Zkušenosti s vyšetřováním tělesného složení normálních a obézních osob u nás a v zahraničí. In Med Sport Boh Slov, 1998; 7(3): 103
  • 13. Rencher AC: Methods of Multivariate Analysis (2nd ed.). John Wiley & Sons. New York, 2003
  • 14. Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. In International Journal of Nursing Studies, 2010; 47(8): 931-936
  • 15.Alanen E: Everything all right in method comparison studies? In Statistical Methods in Medical Research, 2012; 21(4): 297-309
  • 16. R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2012.
  • 17. Korkmaz S: MVN: Multivariate Normality Tests. R package version 1.0. 2013.
  • 18. Nordhausen K, Sirkia S, Oja H, Tyler DE: ICSNP: Tools for Multivariate Nonparametrics, R package version 1.0-9. 2012.
  • 19. Bláha P: W/H2 Body mass index of the current czechoslovak population between the ages of 3 and 70. Institute of Sports Medicine Prague, 1991
  • 20. Kutáč P, Gajda V: Validity of measuring the body composition by means of the BIA and skinfold method in male population with regular motion activities. In Acta Facultatis exercitationis corporis universitatis Presoviensis, 2009; 1(1): 44
  • 21. McRae, MP: Male and female differences in variability with estimting body fat composition using skinfold calipers. In Journal of Chiropractic Medicine, 2010; 9: 157-161
  • 22. Kyle UG, Bosaeus I,. De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent- Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C: Composition of the ESPEN Working Group: Bioelectrical impedance analysis-part I: review of principles and methods. In Clinical Nutrition, 2004; 23: 1226-1243
  • 23.Kyle UG, Bosaeus I,. De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent- Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C: Bioelectrical impedance analysis-part II: utilization in clinical practice. In Clinical Nutrition, 2004; 23: 1430-1453
  • 24. Shafer KJ, Siders WA, Johnson LK, Lukaski HC: Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes, In Nutrition, 2009; 25: 25-32
  • 25. Bosy-Westphal A, Later W, Hitze B, Sato T, Kossel E, Glüer CC, Heller M, Müller MJ: Accuracy of Bioelectrical Impedance Consumer Devices for Measurement of Body Composition in Comparison to Whole Body Magnetic Resonance Imaging and Dual X-Ray Absorptiometry. In Obesity Facts The European Journal of Obesity, 2008; 1(6): 319-324
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.