PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 114 | 106-125
Article title

Simulation of Rotating Black Holes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Considering the analogy between classical thermodynamic parameters and black hole parameters, the four laws of thermodynamics are reinterpreted for Kerr and Kerr-Newman black holes. A simple model for the dynamic relationships was obtained by considering the surface area of the outer horizon of a Kerr and Kerr-Neumann black hole as the area of a perfect black body. Finding the conditions these black holes should satisfy, the equations were numerically solved and simulated for the Hawking temperature, Hawking radiation and entropy variations of Kerr and Kerr-Newman black holes. The Hawking temperature and Hawking radiation of a given rotating black hole drastically increases at the final stage of the black hole evaporation. In the meantime, the entropy of a rotating black hole drastically decreases through the time. The additional angular momentum and the charge effects gain high Hawking temperatures and high Hawking radiation values for the black holes while these effects reduce the entropy of the black holes.
Year
Volume
114
Pages
106-125
Physical description
Contributors
  • Department of Physics, University of Colombo, Colombo 3, Sri Lanka
  • Department of Physics, University of Colombo, Colombo 3, Sri Lanka
References
  • [1] R. L. Piccioni, Einstein for Everyone, Jaico Publishing House (2010).
  • [2] P.C.W. Davies, Thermodynamics of black holes, Rep. Prog. Phys 41 (1978) 1313-1355.
  • [3] W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776-1779.
  • [4] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333-2346.
  • [5] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199-220.
  • [6] T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260-1263.
  • [7] T. Padmanabhan, Thermodynamical Aspects of Gravity: New insights, Rept. Prog. Phys. 73 (2010) 046901.
  • [8] S. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152-166.
  • [9] J. M. Bardeen, B. Carter and S. W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161-170.
  • [10] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975), 199–220.
  • [11] R.Wald, General relativity. Chicago: University of Chicago Press (1984).
  • [12] A. Strominger, Black Holes from A to Z. Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA (2015)
  • [13] T. I. Singh, I. A. Meitei, K. Y. Singh, Hawking radiation and entropy of Kerr-Newman black hole, Astrophys Space Sci 352(2), (2014) 737–741.
  • [14] D. N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7, (2005) 203; arXiv:hep-th/0409024
  • [15] P. C. W. Davies, Thermodynamics of black holes. Reports on Progress in Physics, 41(8) (1978) 1313-1355.
  • [16] S. Hawking, A Brief History of Time, New York, Bantam Books (1988).
  • [17] O. Gron, S. Hervik, Einstein’s General Theory of Relativity, New York, NY: Springer New York (2004) p.246.
  • [18] K. A. I. L Wijewardena Gamalath, N. S. Rajapakse, Thermodynamics of black holes, Int. Lett. Chem. Phys. Astron. 48 (2015) 123-137.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-92ef5f6a-9c66-47a6-ac3a-396812a69908
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.