Preferences help
enabled [disable] Abstract
Number of results
2018 | 106 | 69-80
Article title

Some applications of Noether’s theorem

Title variants
Languages of publication
If the action S= ∫_(t_1)^(t_2)▒〖L(q,〗 (q,) ̇t) dt is invariant under the infinitesimal transformation t ̃=t+ε τ(q,t), q ̃_r= q_r+ε ξ_r (q,t),r=1,… ,n, with ε=constant ≪1, then the Noether’s theorem permits to construct the corresponding conserved quantity. The Lanczos approach employs to ε= q_(n+1) as a new degree of freedom, thus the Euler-Lagrange equation for this new variable gives the Noether’s constant of motion. Torres del Castillo and Rubalcava-García showed that each variational symmetry implies the existence of an ignorable coordinate; here we apply the Lanczos approach to the Noether’s theorem to motivate the principal relations of these authors. The Maxwell equations without sources are invariant under duality rotations, then we show that this invariance implies, via the Noether’s theorem, the continuity equation for the electromagnetic energy. Besides, we demonstrate that if we know one solution of p(x)y''+q(x)y'+r(x)y=0, then this Lanczos technique allows obtain the other solution of this homogeneous linear differential equation.
Physical description
  • Centro de Investigación en Computación, Instituto Politécnico Nacional, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • G. Leibnitz, Dynamica de potentia et leqibus nature corporae (1669) (published in 1890).
  • E. Noether, Invariante variationsprobleme, Nachr. Ges. Wiss. Göttingen 2 (1918) 235-257.
  • Y. Kosmann-Schwarzbach, The Noether theorems, Springer, New York (2011).
  • P. Havas, The connection between conservation laws and invariance groups: folklore, fiction and fact, Acta Physica Austriaca 38 (1973) 145-167.
  • E. Bessel-Hagen, Über die erhaltungssätze der elektrodynamik, Mathematische Annalen 84 (1921) 258-276.
  • R. Weitzenböck, Invariantentheorie, Groningen: Noordhoff (1923).
  • D. E. Neuenschwander, Symmetries, conservation laws, and Noether’s theorem, Radiations, fall (1998) 12-15.
  • D. E. Neuenschwander, Emmy Noether’s wonderful theorem, The Johns Hopkins University Press, Baltimore (2011).
  • M. Havelková, Symmetries of a dynamical system represented by singular Lagrangians, Comm. in Maths. 20(1) (2012) 23-32.
  • A. Trautman, Noether’s equations and conservation laws, Commun. Math. Phys. 6(4) (1967) 248-261.
  • H. Rund, A direct approach to Noether’s theorem in the calculus of variations, Utilitas Math. 2 (1972) 205-214.
  • M. A. Sinaceur, Dedekind et le programme de Riemann, Rev. Hist. Sci. 43 (1990) 221-294.
  • D. Laugwitz, Bernhard Riemann 1826-1866. Turning points in the conception of mathematics, Birkhäuser, Boston MA (2008).
  • N. Byers, Emmy Noether’s discovery of the deep connection between symmetries and conservation laws, Proc. Symp. Heritage E. Noether, Bar Ilan University, Tel Aviv, Israel, 2-3 Dec. 1996.
  • K. A. Brading, H. R. Brown, Symmetries and Noether’s theorems, in “Symmetries in Physics, Philosophical Reflections”, Eds. Katherine A. Brading, Elena Castellani, Cambridge University Press (2003) 89-109.
  • L. M. Lederman, Ch. T. Hill, Symmetry and the beautiful Universe, Prometheus Books, Amherst, New York (2004) Chaps. 3 and 5.
  • M. Hargittai, I. Hargittai, Candid Science IV: Conversations with famous Physicists, Imperial College Press, London (2004).
  • C. Lanczos, The variational principles of mechanics, University of Toronto Press (1970) Chap. 11.
  • C. Lanczos, Emmy Noether and the calculus of variations, Bull. Inst. Math. & Appl. 9(8) (1973) 253-258.
  • P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, Lagrangians: Symmetries, gauge identities, and first integrals, The SciTech, J. of Sci. & Tech. 3(1) (2014) 54-66.
  • J. López-Bonilla, R. López-Vázquez, B. Man Tuladhar, Maxwell equations and duality rotations, The SciTech, J. of Sci. & Tech. 3(2) (2014) 20-22.
  • P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, On the gauge identities & genuine constraints of certain Lagrangians, Prespacetime Journal 6(3) (2015) 238-246.
  • P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, Lanczos approach to Noether’s theorem, Bull. Soc. for Mathematical Services & Standards 3(3) (2014) 1-4.
  • P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, G. Ovando, S. Vidal-Beltrán, Noether and matrix methods to construct local symmetries of Lagrangians, World Scientific News 97 (2018) 51-68.
  • G. F. Torres del Castillo, I. Rubalcava-García, Variational symmetries as the existence of ignorable coordinates, European J. Phys. 38 (2017) 025002.
  • A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Linear differential equations of second, third, and fourth order, World Scientific News 105 (2018) 225-232.
  • D. E. Neuenschwander, Elegant connections in Physics: Symmetries, conservation laws, and Noether’s theorem, Soc. of Physics Students Newsletter, Arizona State Univ., Tempe, AZ, USA, Jan 1996, 14-16.
  • M. Henneaux, C. Teitelboim, J. Zanelli, Gauge invariance and degree of freedom count, Nucl. Phys. B 332(1) (1990) 169-188.
  • H. J. Rothe, K. D. Rothe, Classical and quantum dynamics of constrained Hamiltonian systems, World Scientific, Lecture Notes in Physics 81, Singapore (2010).
  • G. F. Torres del Castillo, Point symmetries of the Euler-Lagrange equations, Rev. Mex. Fís. 60 (2014) 129-135.
  • G. Bahadur Thapa, A. Hernández-Galeana, J. López-Bonilla, Continuity equations in curved spaces, World Scientific News 105 (2018) 197-203.
  • G. F. Torres del Castillo, C. Andrade-Mirón, R. Bravo-Rojas, Variational symmetries of Lagrangians, Rev. Mex. Fís. E59 (2013) 140-147.
  • E. J. Routh, Dynamics of rigid bodies, Macmillan (1877).
  • H. V. Helmholtz, Journal of Math. 97 (1884) 111.
  • J. H. Poynting, On the transfer of energy in the electromagnetic field, Phil. Trans. Roy. Soc. London 175 (1884) 343-361.
  • G. Y. Rainich, Electrodynamics in the general relativity theory, Trans. Amer. Math. Soc. 27 (1925) 106-136.
  • C. W. Misner, J. A. Wheeler, Classical physics as geometry, Ann. of Phys. 2(6) (1957) 525-603.
  • J. A. Wheeler, Geometrodynamics, Academic Press, New York (1962).
  • L. Witten, A geometric theory of the electromagnetic and gravitational fields, in ‘Gravitation: an introduction to current research’, Wiley, New York (1962) Chap. 9.
  • R. Penney, Duality invariance and Riemannian geometry, J. Math. Phys. 5(10) (1964) 1431-1437.
  • G. F. Torres del Castillo, Duality rotations in the linearized Einstein theory, Rev. Mex. Fís. 43(1) (1997) 25-32.
  • M. Acevedo, J. López-Bonilla, M. Sánchez-Meraz, Quaternions, Maxwell equations and Lorentz transformations, Apeiron 12(4) (2005) 371-384.
  • B. Riemann, Die partiellen Differential-Gleichungen der mathematische physik, Lecture notes edited by H. Weber, vol. 2, Vieweg, Braunschweig (1901).
  • L. Silberstein, Elektromagnetische Grundgleichungen in bivektorieller behandlung, Ann. der Physik 22 (1907) 579-586.
  • L. Silberstein, Nachtrang zur abhandlung über electromagnetische grundgleichungen in bivektorieller behandlung, Ann. der Physik 24 (1907) 783-784.
  • I. Bialynicki-Birula, Photon wave function, Progress in Optics 36, E. Wolf, Elsevier, Amsterdam (1996).
  • N. Hamdan, I. Guerrero-Moreno, J. López-Bonilla, L. Rosales, On the complex Faraday vector, The Icfai Univ. J. Phys. 1(3) (2008) 52-56.
  • Z. Ahsan, Differential equations and their applications, Prentice-Hall, New Delhi (2004).
  • L. Elsgotz, Differential equations and variational calculus, MIR, Moscow (1983).
  • C. Lanczos, A new transformation theory of linear canonical equations, Ann. der Physik 20(5) (1934) 653-688.
  • G. Srinivasan, A note on Lagrange’s method of variation of parameters, Missouri J. Math. Sci. 19(1) (2007) 11-14.
  • T. Quinn, S. Rai, Variation of parameters in differential equations, PRIMUS 23(1) (2012) 25-44.
  • J. López-Bonilla, D. Romero-Jiménez, A. Zaldívar-Sandoval, Variation of parameters method via the Riccati equation, Prespacetime Journal 7(8) (2016) 1217-1219.
  • G. Bahadur Thapa, A. Domínguez-Pacheco, J. López-Bonilla, On the linear differential equation of second order, Prespacetime Journal 6(10) (2015) 999-1001.
  • J. López-Bonilla, G. Posadas-Durán, O. Salas-Torres, Variational principle for py^''+qy^'+ry=ϕ, Prespacetime Journal 8(2) (2017) 226-228.
  • M. Planck, Bemerkungen zum prinzip der action und reaction in der allgemeinen dynamic, Phys. Z. 9 (1908) 828-830.
  • R. Penrose, Spinors in general relativity, Acta Physica Polonica B 30(10) (1999) 2979-2987.
  • J. L. Synge, Relativity: the special theory, North-Holland, Amsterdam (1965).
  • A. Warwick, Masters of theory. Cambridge and the raise of Mathematical Physics, The University of Chicago Press (2003) Chap. 6.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.