PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 6 | 17-22
Article title

Sferule z granicy Kreda-Paleogen (Lechówka, Polska) – wstępne dane

Content
Title variants
EN
Spherules from the Cretaceous–Paleogene boundary (Lechówka, Polska) – preliminary data
Languages of publication
PL
Abstracts
EN
Samples of boundary clay from Cretaceous–Paleogene deposits from Lechówka, Poland were examined for spherules to confirm the impact origin of the sediment. The chemical composition of investigated spherules show similarities to material from the K–Pg boundary from Stevns Klint. The impact genesis of the spherules is confirmed by the presence of nickel-rich spinel grains on their surfaces. The deposits with spherules are built by smectite with Al and Mg enrichment. This cheto smectite is forming as a result of the weathering of the impact glass.
Year
Volume
6
Pages
17-22
Physical description
References
  • Alvarez L.W., Alvarez W., Asaro F., Michel H.V., 1980, Extraterrestrial cause for the Cretaceous– Tertiary extinction, Science, 208, s. 1095–1108.
  • Alvarez W., 2003, Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions, Astrobiology, 3, s. 153–161.
  • Bauluz B., Peacor D.R., Elliot C., 2000, Coexisting altered glass and Fe-Ni oxides at the Cretaceous– Tertiary boundary, Stevns Klint (Denmark): direct evidence of meteorite impact, Earth and Planeary Science Letters, 182, s. 127–136.
  • Bohor B.F., Modreski P.J., Foord E.E., 1987, Shocked quartz in the Cretaceous–Tertiary boundary clays: Evidence for a global distribution, Science, 236, s. 705–709.
  • Bohor B.F., Betterton W.J., 1990, K/T spherules-clarifying the concept, Lunar and Planetary Science, 21, s. 107–108.
  • Bohor B.F., Glass B.P., 1995, Origin and diagenesis of K/T impact spherules – From Haiti to Wyoming and beyond, Meteoritics, 30, s. 182–198.
  • Bohor B.F., Foord E.E., Ganapathy R., 1986, Magnesioferrite from the Cretaceous–Tertiary boundary, Caravaca, Spain, Earth and Planetary Science Letters, 81, s. 57–66.
  • Brachaniec T., Karwowski £., Szopa K., 2014, Spherules associated with the Cretaceous–Paleogene boundary in Poland, Acta Geologica Polonica, 64, s. 99–108.
  • Crocket J.H., Officer C.B., Wezel F.C., Johnson G.D., 1988, Distribution of noble metals across the Cretaceous/Tertiary boundary at Gubbio, Italy: Iridium variation as a constraint on the duration and nature of Cretaceous/Tertiary boundary events, Geology, 16, s. 77–80.
  • Debrabant P., Fourcade E., Chamley H., Rocchia R., Robin E., Bellier J.P., Gardin S., Thiebault F., 1999, Les argiles de la transition Cretace–Tertiaire au Guatemala, temoins d’un impact d’asteroide, Bulletin De La Societe Geologique De France, 170, s. 643–660.
  • Ebihara M., Miura T., 1996, Chemical characteristics of the Cretaceous–Tertiary boundary layer at Gubbio, Italy, Geochimica et Cosmochimica Acta, 60, s. 5133–5144.
  • French B.M., 1998, Traces of Catastrophe. A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures, Lunar and Planetary Institute, Boulevard.
  • French B.M., Koeberl C., 2010, The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why, Earth-Science Reviews, 98, s. 123–170.
  • Ganapathy R., 1980, A major meteorite impast on the earth 65 million years ago: Evidence from the Cretaceous–Tertiary boundary clay, Science, 209, s. 921–923.
  • Glass B.P., Burns C.A., 1988, Microkrystites: a new term for impact-produced glassy spherules containing primary crystallities, [w:] G. Ryder (red.), Proceedings of the 18th Lunar and Planetary Science Conference, Cambridge, s. 455–458.
  • Glass B.P., Simonson B.M., 2012, Distal impact ejecta Layers: Spherules and More, Elements, 8, s. 43–48.
  • Glass B.P., Simonson B.M., 2013, Distal impact ejecta layers. A record of large impacts in sedimentary deposits, Impact Studies. Springer; Berlin–Heidelberg, s. 92–307.
  • Izett G.A., 1987, The Cretaceous–Tertiary (K–T) boundary interval, Raton Basin, Colorado and New Mexico, and its content of shock metamorphosed minerals-Implications concerning the Cretaceous– Tertiary impact-extinction event, USGS Open-File Report, 58, s. 87–606.
  • Izett G.A., 1990, The Cretaceous/Tertiary boundary interval, raton basin, Colorado and New Mexico, and its ceontent of shock-metamorphosed minerals; evidence relevant to the K/T boundary impact-extinction theory, Geological Society of America Special Papers, 249, s. 1–100.
  • Izett G.A., Dalrymple G.B., Snee L.W., 1991, 40Ar/39Ar age of K–T boundary tektites from Haiti, Science, 252, s. 159–1543.
  • Kyte F.T., Smit J., 1986, Regional variations in spinel compositions: an important key to the Cretaceous event, Geology, 14, s. 485–487.
  • Kyte F.T., Bohor B., 1995, Nickel-rich magnesiowüstite in Cretaceous/Tertiary boundary spherules crystallized from ultramafic, refractory silicate liquids, Geochimica et Cosmochimica Acta, 59, s. 4967–4974.
  • Martinez-Ruiz F., Ortega-Huertas M., Palomo-Delgado I.,Smit J., 2001, K–T boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulubejecta deposits, Geological Society Special Publications, 183, s. 149–161.
  • Montanari A., Hay R.L., Alvarez W., Asaro F., Michel H.V., Alvarez L.W., Smit J., 1983, Spheroids at the Cretaceous–Tertiary boundary are altered impact droplets of basaltic composition, Geology, 11, s. 668–671.
  • McHone J.F., Nieman R.A., Lewis C.F., Yates A.M., 1989, Stishovite at the Cretaceous/Tertiary boundary Raton, New Mexico, Science, 243, s. 1182–1184.
  • Pollastro R.M., Bohor B.F., 1993, Origin and clay-mineral genesis of the Cretaceous/Tertiary boundary unit, western interior of North America, Clays and Clay Minerals, 41, s. 7–25.
  • Premović P.I., 2009, The Conspicuous Red “Impact” Layer of the Fish Clay at Højerup (Stevns Klint, Denmark), Geochemistry International, 47, s. 513–521.
  • Racki G., Machalski M., Koeberl C., Harasimiuk M., 2011, The weathering-modified iridium record of a new Cretaceous–Palaeogene site at Lechówka near Che³m, SE Poland, and its palaeobiologic implications, Acta Palaeontologica Polonica, 56, s. 205–215.
  • Robin E., Bonté P., Froget L., Jéhanno C.,Rocchia, R., 1992, Formation of spinels in cosmic objects during atmospheric entry: A clue to the Cretaceous–Tertiary boundary event, Earth and Planetary Science Letters, 108, s. 181–190.
  • Schmidt R.M., Holsapple K.A., 1982, Estimates of crater size for large-body impact: gravity-scaling results, [w:] L.T. Silver, P.H. Schultz (red.), Geological implications of impacts of large asteroids and comet on the Earth, Geological Society of America Special Papers, 190, s. 93–102.
  • Schmitz B., Andersson P., Dahl J., 1988, Iridium, sulfur isotopes and rare earth elements in the Cretaceous–Tertiary boundary clay at Stevns Klint, Denmark, Geochimica et Cosmochimica Acta, 52, s. 229–236.
  • Sharpton V.L., Dalrymple G.B., Marín L.E., Ryder G., Schuraytz B.C.,Urrutia- Fucugauchi J., 1992, New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary, Nature, 359, s. 819–821.
  • Sigurdsson H., D’Hondt S., Arthur M.A., Bralower T,J., Zachos J.C., Van Fossen M.,Channell J.E.T., 1991, Glass from the Creataceous–Tertiary boundary in Haiti, Nature, 349, s. 482–487.
  • Smit J., Alvarez W., Montanari A., Swinburne N., Kempen Van T.M., Klaver G.T., Lustenhouwer W.J., 1992, “Tektites” and microtektites at the Cretaceous–Tertiary boundary: Two strewn fields, one crater?, Proceedings of Lunar and Planetary Science, 22, s. 87–100.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-8d273ec5-625e-4f87-a359-8f6c5b0af729
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.