Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 68 | 5 | 332–349

Article title

Applying Data Mining and Machine Learning Algorithms to predict symptom development in Parkinson's disease

Content

Title variants

PL
Stosowanie eksploracji danych i algorytmów uczenia maszynowego do przewidywania rozwoju objawów w chorobie Parkinsona

Languages of publication

EN

Abstracts

EN
The standard treatment of PD symptoms depends on the experience of a particular neurologist, UPDRS and Hoehn and Yahr scale measurements in order to estimate the stage of PD, the patient’s reports and patient’s responses to medications. All these estimations are to a great extent subjective and determine different treatments in different centers. The purpose of this work was to develop an approach that may more precisely and objectively estimate a patient’s symptoms and in consequence optimize individual PD treatment. We have presented sever-al examples of different methods that make measurements in PD more precise. However, greater precision and objectivity were only the first steps. In addition, all (standard and new) data must be evaluated in an intelligible way in order to better estimate PD symptoms and their developments. We have used data mining and machine learning approaches to mimic the “golden” neurologist’s reasoning.
PL
Standardowe leczenie objawów PD zależy od doświadczenia danego neurologa oraz wyników pomiarów w skalach UPDRS oraz Hoehn i Yahr , aby ocenić stadium choroby Parkinsona, opinii pacjenta i jego reakcji na leki. Wszystkie oceny stosowane w tym celu są w dużej mierze subiektywne. Celem niniejszej pracy było opracowanie podejścia, które mogłoby bardziej precyzyjnie i obiektywnie oszacować fluktację objawów pacjenta i w konsekwencji optymalizację indywidualnego traktowania PD. Pokazaliśmy kilka przykładów różnych metod, które zwiększają precyzję pomiarów w PD. Trzeba zaznaczyć, że większa precyzja i obiektywność są tylko pierwszym krokiem. Ostatecznie wszystkie dane (otrzymane zarówno nowymi, jak i standardowymi metodami) muszą być porównane w czytelny sposób, aby lepiej ocenić nasilenie i rozwój objawów PD. Użyta metoda eksploracji danych i algorytm uczenia maszynowego mają naśladować „złoty” tok rozumowania neurologa .

Discipline

Year

Volume

68

Issue

5

Pages

332–349

Physical description

Contributors

  • Polish-Japanese Institute of Information Technology ul . Koszykowa 86 02 -008 Warszawa tel: +48 22 58 44 500; fax: +48 22 58 44 501

References

  • 1. Przybyszewski A. The Neurophysiological Bases of Cognitive Computation Using Rough Set Theory. In: Transactions on Rough Sets IX. Eds. J.F. Peters et al. Springer Verlag, Berlin–Heidelberg 2008, LNCS 2008; 5390, 287–317.
  • 2. Przybyszewski A. Logic in Visual Brain: Compute to Recognize Simila rities. Formalized Anatomical and Neurophysiological Bases of Cognition. Review of Psychology Frontier 2012; 1: 20–32.
  • 3. Przybyszewski A. Logical rules of visual brain: From anatomy through neurophysiology to cognition. Cognitive Systems Research 2010; 11: 53–66.
  • 4. Sebok M., Erlacher A., Seiler S., Homann C.N. Non-motor features and motor complications in IPD: are UPDRS parts I nad IV relevant evaluation tools? European Neurology Meeting 15 October 2013. J. Neurol. Sci. 2013, 333, suppl. 1: e87.
  • 5. Pawlak Z. Rough set. Theoretical aspects of reasoning about data. Kluwer Academic Publisher, Dordrecht 1991.
  • 6. Bazan J., Szczuka M. RSES and RSESlib – a collection of tools for rough set computations. In: Rough Sets and Current Trends in Computing. Eds. W. Ziarko, Y. Yao. Springer Verlag, Berlin–Heidelberg 2001. LNAI vol. 2005, pp. 106–113.
  • 7. Novak P., Przybyszewski A.W., Barborica A., Ravin P., Margolin L., Pilitsis, J. G. Localization of the subthalamic nucleus in Parkinson disease using multi unit activity. J. Neurol. Sci. 2011; 310: 44–49.
  • 8. Kwiek S.J., Kłodowska-Duda G., Wojcikiewicz T. et al. Simultaneous targeting and stimulation of STN and VIM in tremor predominant PD patients. Pro's and cons. Acta Neurochir. 2006; 14(10): 36.
  • 9. Kwiek S.J., Boczarska-Jedynak M., Świat M. et al. DBS for Parkinson's disease treatment. Experience and results interdisciplinary Silesian Centre for Parkinson's Disease Treatment in Katowice. Neurol. Neurochir. Pol. 2010; 44, supl. 1: S16-S17.
  • 10. Pizzolato T. Mandat, T. Deep Brain Stimulation for Movement Disorders. Front. Integr. Neurosci. 2012; 6: 2. doi: 10.3389/fnint.2012.00002.
  • 11. Talos I-F., Jakab M., Kikinis R., Shenton M.E. SPL-PNL Brain Atlas. SPL 2008.
  • 12. Cauda F., Giuliano G., Federico D., Sergio D., Katiuscia S. Discovering the somato-topic organization of the motor areas of the medial wall using low-frequency BOLD fluctuations. Hum. Brain Mapp. 2011; 32: 1566–1579. doi: 10.1002/hbm.21132.
  • 13. Mayer A.R., Zimbelman J.L., Watanabe Y., Rao S.M. Somatotopic organization of themedial wall of the cerebral hemispheres: a 3 Tesla fMRI study. Neuroreport 2001; 12, 3811–3814.
  • 14. Szymanski A., Przybyszewski A.W. Rough Set Rules help to optimize parameters of Deep Brain Stimulation in Parkinson's Patients. In: Brain Informatics and Health. Eds. D. Ślęzak, A-H. Tan, J.F. Peters, L. Schwabe. LNAI 2014, vol. 8609, pp. 345–356.
  • 15. Stawarz M., Kwiek S.J., Polanski A. et al. Algorithms for computing indexes of neurological gait abnormalities in patients after DBS surgery for Parkinson Disease based on motion capture data. Machine Graphics and Vision 2011; 20: 299–317.
  • 16. Ciecierski K., Ras Z.W., Przybyszewski A.W. Foundations of recommender system for STN localization during DBS surgery in Parkinson’s patients. Foundations of Intelligent Systems. ISMIS 2012 Symposium. Springer Verlag Berlin– Heidelberg 2012, LNAI vol. 7661, pp. 234–243.
  • 17. Cieciersk, K., Ras Z.W., Przybyszewski A.W. Discrimination of the micro electrode recordings for STN localization during DBS surgery in Parkinson’s patients. Flexible Query Answering Systems. FQAS 2013 Symposium. Springer Verlag Berlin–Heidelberg 2013, LNAI vol. 8132, pp. 328–339.
  • 18. Ciecierski K., Ras Z.W., Przybyszewski A.W. Foundations of automatic system for intrasurgical localization of subthalamic nucleus in Parkinson patients. Web Intelligence and Agent Systems 2014; 12: 63–82.
  • 19. Ciecierski K., Ras Z.W., Przybyszewski A.W. Intraoperative Decision Making with Rough Set Rules for STN DBS in Parkinson Disease. In: In: Brain Informatics and Health. Eds. D. Ślęzak, A-H. Tan, J.F. Peters, L. Schwabe. LNAI 2014, vol. 8609, pp. 323–334.
  • 20. Przybyszewski A.W., Boczarska M., Kwiek S.J., Wojciechowski K. Rough Set Based Classifications of Parkinson’s Patients Gaits. In: Intelligent Information and Database Systems. Eds. N.T. Nguyen, B. Attachoo, B. Trawiński K. Sombooviwa t. ACIIDS 2014, Part II. Springer National Publishing. LNAI 2014; vol. 8398, pp. 525–534. 10.1007/978-3-319-05458-2_54.
  • 21. Bazan J., Son Nguyen H., Trung Nguyen T., Skowron A., Stepaniuk J. Synthesis of decision rules for object classification. In: Incomplete Information: Rough Set Analysis. Eds. E. Orłowska. Physica Verlag, Heidelberg 1998, pp. 23–57.
  • 22. Szlufik S., Dudkiewicz J., Przybyszewski A.W., Habela P., Koziorowski D. Reflexive saccadic eye movements latency as biomarker that correlates with UPDRS in Parkinson's disease patients. Mov. Dis. 2014; vol. 29, Suppl. Abstracts suplement.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-8b6a47cb-6ef0-46fd-9f5d-b38187b2b758
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.