PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 58 | 34-47
Article title

Potential of Potamogeton lucens macrophyte for generation of fuels and chemicals by pyrolysis

Content
Title variants
Languages of publication
EN
Abstracts
EN
The study investigates pyrolysis potential of naturally dried macrophyte Potamogeton lucens for production of fuels and chemicals by thermogravimetric analysis (TGA). The kinetics of pyrolysis is studied under non-isothermal conditions in nitrogen atmosphere. The analysis of physiochemical properties viz. proximate analysis, ultimate analysis, heating value and fourier transform infrared spectroscopy (FTIR) of Potamogeton lucens was suggestive of upgradation of weed before it could serve as a fuel. Three different heating rates viz. 5, 15 and 20 °C/min were used in pyrolysis. Pyrolysis mainly took place in the temperature range of 177-377 °C. Activation energy (E) and pre-exponential factors (A) were calculated using the iso-conversional method. The results showed that the decomposition process exhibited two zones of constant apparent activation energies. The values ranged from 8.36 to 300.38 KJ/mol in the conversion range of 5-85%. The order of magnitudes of E and A in pyrolysis were conducive for the weed to serve as potential feedstock in generation of fuels and chemicals.
Year
Volume
58
Pages
34-47
Physical description
References
  • [1] T. Blaschkea, M. Biberacher, S. Gadocha, I. Schardinger, Biomass and Bioenergy 55 (2013) 3-16 http://dx.doi.org/10.1016/j.biombioe.2012.11.022
  • [2] N. Agya Utama, M. Andhy, M. Fathoni, M. A. Kristianto, B. C. McLellan, Procedia Environmental Sciences 20 (2014) 40-45.
  • [3] J. Ben-Iwo, I. Manovic, P. Longhurst, Renewable and Sustainable Energy Reviews 63 (2016) 172-192.
  • [4] D. Ayhan, Energy Sources 25 (2003) 67-75, DOI: 10.1080/00908310290142127
  • [5] M. Poletto, A. J. Zattera, M. M. C. Forte, R. M. C. Santana, Bioresource Technology 109 (2012) 148-153.
  • [6] M. J. Safi, I. M. Mishra and B. Prasad, Thermochimica acta 412 (2004) 155-162
  • [7] G. Wang, W. Li, B. Li and H. Chen, Fuel 87 (2008) 552-558.
  • [8] Y. Liang, B. Cheng, Y. Si, D. Cao, H. Jiang, G. Han and X. Liu, Renewable Energy 68 (2014) 111-117.
  • [9] P. B. Gangavati, M. J. Safi, A. Singh, B. Prasad and I.M., Thermochimica acta 428 (2005) 63-70.
  • [10] P. K. Chaudhari, A. Singh, B. Prasad, I. M. Mishra and S. Chand, Energy Sources, Part A 34 (2012) 336-346.
  • [11] F. O. Oner, A. Yurum and Y. Yurum, Energy sources part A: recovery, utilization, and environmental effects 38 (2016) 2197-2204. http://dx.doi.org/10.1080/15567036.2015.1047067
  • [12] Y. Chisti, Biotechnol. Adv. 25 (2007) 294-306.
  • [13] E. Suali, R. Sarbatly, Renew. Sustain. Energy Rev. 16, (2012) 4316-4342.
  • [14] S. A. El-Sayed and M. E. Mostafa, Waste Biomass Valor 6 (2015) 401-415. DOI 10.1007/s12649-015-9354-7.
  • [15] L. Sun, J. Y. Chen, I. I. Egulescu, M. A. Moore and B. J. Collier, Bioresource Technology 102 (2011) 1951-1958.
  • [16] F. Guo, F. Dong, Z. Lv, P. Fan, S. Yang and L. Dong, Energy Conversion and Management 93 (2015) 367-376.
  • [17] K.Wua, J. Liu, Y. Wua, Y. Chen, Q. Li , X. Xiao and M. Yang, Bioresource Technology 163 (2014) 18-25.
  • [18] A. Demirbas, Bioresource Technology 66 (1998) 247-252.
  • [19] ASTM (2013). Standard Test Method for Moisture Analysis of Particulate Wood Fuels, ASTM E871 - 82(2013). ASTM international, Pennsylvania.
  • [20] ASTM (2013). Standard Test Method for Ash in Wood, ASTM D1102 – 84. ASTM international, Pennsylvania.
  • [21] ASTM (2013). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, ASTM E872 – 82. ASTM international, Pennsylvania.
  • [22] ASTM (2008). Standard Test Methods for Instrumental Determination of Carbon, Hydrogen and Nitrogen in Laboratory Samples of Coal, ASTM D5373-08.ASTM international, Pennsylvania.
  • [23] S. A. Channiwalaa and P. P. Parikh, Fuel 81 (2002) 1051-1063.
  • [24] S. R. Chandrasekaran, P. K. Hopke, L. Rector, G. Allen and L. Lin, Energy Fuels 26 (2012) 4932-4937. DOI:10.1021/ef300884k
  • [25] E. Biagini, A. Fantei and L. Tognotti, Thermochimica Acta 472 (2010) 55-63.
  • [26] L. Gasparovic, Z. Korenova, L. Jelemensky, Chemical Papers 64 (2010)174-181.
  • [27] Y. H. Park, J. Kim, S. S. Kim and Y. K. Park, Bioresource Technology 100 (2009) 400-405.
  • [28] T. Wongsiriamnuay and N. Tippayawong, Bioresource Technology 101 (2010a) 9314-9320
  • [29] T. Wongsiriamnuay and N. Tippayawong, Bioresource Technology 101 (2010b) 5638-5644.
  • [30] P. Simon, Journal of Thermal Analysis and Calorimetry 76 (2004)123-132.
  • [31] S. R. Chandrasekaran and P. K. Hopke, Bioresource Technology 125 (2012) 52-58
  • [32] P. McKendry, Bioresource Technology 83 (2002) 47-54.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-88f2a821-9f0c-4fe8-9512-6b8a0351c15c
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.