Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2025 | 62 | 151-166

Article title

Sea surface height, sea surface temperature, and chlorophyll-a as indicators for determining eddy in Indonesian waters

Content

Title variants

Languages of publication

EN

Abstracts

EN
Sea surface height, sea surface temperature, and chlorophyll-a are parameters that can identify and monitor the presence and characteristics of eddies more accurately in the complex and dynamic waters of Indonesia. The identification and monitoring of eddies are important for understanding ocean variability and its implications for marine ecosystems. The objective of this study is to determine the distribution and characteristics of eddies in Indonesian waters. The data used were obtained from HYCOM (Hybrid Coordinate Ocean Model). The study area covered Indonesian waters with coordinates 6°N - 11°S and 95°E - 141.5°E, then processed using MATLAB software. Eddy detection was performed using the Automated Eddy Detection (AED) method. Sea surface height, sea surface temperature, and chlorophyll-a data were calculated and overlaid with the eddy detection results. The results of the study show that the highest concentration of eddies occurs in the waters west of Sumatra, south of Java, and the Indian Ocean with 107 occurrences, and in the waters north of Papua and the Pacific Ocean with 101 occurrences. The average diameter of cyclonic eddies is 90.626 km and 95.834 km for anticyclonic eddies. The average SSH value was 0.547 m for cyclonic eddies and 0.644 m for anticyclonic eddies. The average temperature was 29.209 °C for cyclonic eddies and 29.356 °C for anticyclonic eddies. The average chlorophyll-a value is 0.069 mg/m3 for cyclonic eddies and 0.074 mg/m3 for anticyclonic eddies.

Year

Volume

62

Pages

151-166

Physical description

Contributors

  • Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, Kab. Sumedang 45363, Indonesia
  • Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, Kab. Sumedang 45363, Indonesia
author
  • Faculty of Fisheries and Marine Sciences, Padjadjaran University, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, Kab. Sumedang 45363, Indonesia

References

  • [1] Wyrtki, K. (1987). Indonesian through flow and the associated pressure gradient. Journal of Geophysical Research: Oceans, 92(C12), 12941-12946
  • [2] Wyrtki K. (1961). The Physical Oceanography of South East Asian Waters. California: Naga Report, University of California Press, La Jolla.
  • [3] Tchernia, P., 1980. Descriptive regional oceanography. Pergamon Marine Series, Edited by J.C. Swallow, Pergamon Press, Oxford, 253 p.
  • [4] Tomascik, T., A. J. Mah, A. Nontji & M.K, Moosa. (1997). The Ecology of Indonesian Seas. The Ecology of Indonesian Series. Vol. VII. Periplus Eds. (HK) Ltd., p. 1074
  • [5] Meyers, G., Bailey, R. J., & Worby, A. P. (1995). Geostrophic transport of Indonesian throughflow. Deep Sea Research Part I: Oceanographic Research Papers, 42(7), 1163-1174
  • [6] Gordon, A. L., Susanto, R. D., & Ffield, A. (1999). Throughflow within makassar strait. Geophysical Research Letters, 26(21), 3325-3328
  • [7] Hautala, S. L., Sprintall, J., Potemra, J. T., Chong, J. C., Pandoe, W., Bray, N., & Ilahude, A. G. (2001). Velocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean. Journal of Geophysical Research: Oceans, 106(C9), 19527-19546
  • [8] Robinson, A. R., & Leslie, W. G. (1985). Estimation and prediction of oceanic eddy fields. Progress in Oceanography, 14, 485-510
  • [9] Zatsepin, A.G., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kremenetskiy, V.V., Ostrovskii, A.G., & Soloviev, D.M., 2011. Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology, 51, 554-567
  • [10] Qiu, B., Chen, S., Klein, P., Sasaki, H., & Sasai, Y., (2014). Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12), 3079-3098
  • [11] Mann, K. H., & Lazier, J. R. (2005). Dynamics of marine ecosystems: biological-physical interactions in the oceans. John Wiley & Sons.
  • [12] Qu, T., Du, Y., Strachan, J., Meyers, G., & Slingo, J. (2005). Sea Surface Temperatureand Its Variability. Oceanography, 18(4), 50
  • [13] Ferrari, R. (2011). A Frontal Challenge for Climate Models. Science, 332, 316
  • [14] Kang, J.H., Woong Seo, K., Kyung Il Chang, Jae Hoon Noh, 2004. Distribution of Plankton Related to the Mesoscale Physical Structure within the Surface Mixed Layer in the Southwestern East Sea, Korea. J. Plankton Res. 26, 1515-1528
  • [15] Nencioli, F., Dong, C., Dickey, T., Washburn, L., & Mcwilliams, J. C. (2010). A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3), 564-579
  • [16] Nencioli, F., Kuwahara, V. S., Dickey, T. D., Rii, Y. M., & Bidigare, R. R. (2008). Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawai’i: Cyclone Opal observations during E-Flux III. Deep-Sea Research Part II: Topical Studies in Oceanography, 55(10-13), 1252-1274
  • [17] Sell, A. (2002). Eddy–An Introduction: Impact on Marine Food Chains. University of Hamburg, Jerman.
  • [18] Bakun, A. (2006). Fronts and Eddy as Key Structures in the Habitat of Marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina, 70(S2), 105-122
  • [19] Daryabor, F., Ooi, S. H., Samah, A. A., & Akbari, A. (2016). Dynamics of the water circulations in the Southern South China Sea and its seasonal transports. PLoS ONE, 11(7), 1-20
  • [20] Levy Marina, Iovino D., Resplandy L., Klein Patrice, Madec Gurvan, Treguier Anne-Marie, Masson S., Takahashi K. (2012). Large-scale impacts of sub-mesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modelling, 43-44, 77-93. http://dx.doi.org/10.1016/j.ocemod.2011.12.003
  • [21] McGillicuddy Jr, D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W., Johnson, R., Dickey, T. D., ... & Knap, A. H. (1998). Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394(6690), 263-266
  • [22] Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167-216
  • [23] Siegel, D. A., McGillicuddy Jr, D. J., & Fields, E. A. (1999). Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. Journal of Geophysical Research: Oceans, 104(C6), 13359-13379

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-87cb8364-299d-40b4-b657-1ef779ce5408
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.