Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 5 | 1 | 77-82

Article title

THE ANGIOTENSIN CONVERTING ENZYME GENE I/D POLYMORP HISM IN POLISH ROWERS

Content

Title variants

Languages of publication

EN

Abstracts

EN
Angiotensin converting enzyme gene (ACE) is the most frequently investigated genetic marker in the context of genetic conditioning of athletic predispositions. The product of the gene is a key component of the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), mainly responsible for the regulation of blood pressure. The main aim of the study was to determine the possible interaction between the ACE I/D polymorphism and endurance athlete status in a group of Polish rowers in comparison with sedentary individuals. 121 male Polish rowers, members of academic sports clubs, and 115 unrelated volunteers, were recruited for the study. The PCR amplification of the insertion (I) or deletion (D) fragment of the ACE gene was performed. Compared with control group, the frequency of the I allele differ significantly from that found in rowers (57.4% vs. 44.3%; P=0.013) and the ACE genotype frequency amongst the whole cohort of rowers (30.6% II, 53.7% ID, 15.7% DD) was also different from expected values (control group 19.1% II, 50.4% ID, 30.4% DD; P=0.017). Our investigation confirms a positive association of the I allele of the ACE gene with endurance athlete status in a group of Polish rowers.

Contributors

  • Faculty of Physical Culture and Health Promotion, Szczecin University, Poland
  • Faculty of Physical Culture and Health Promotion, University of Szczecin, Poland
  • Faculty of Physical Culture and Health Promotion, University of Szczecin, Poland
author
  • Faculty of Physical Culture and Health Promotion, Szczecin University, Poland

References

  • 1. Alvarez R., Terrados N., Ortolano R., Iglesias-Cubero G., Reguero J.R., Batalla A., Cortina A., Fernández-García B., Rodríguez C., Braga S., Alvarez V., Coto E. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000;82(1-2):117-20.
  • 2. Amir O., Amir R., Yamin Ch., Attias E., Eynon N., Sagiv M., Sagiv M., Meckel Y. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp. Physiol. 2007;92:881-886.
  • 3. Cassis L., Helton M., English V., Burke G. Angiotensin oxygen consumption. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282:445-453.
  • 4. Charbonneau D.E., Hanson E.D., Ludlow A.T., Delmonico M.J., Hurley B.F., Roth S.M. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med. Sci. Sports Exerc. 2008;40:677-683.
  • 5. Cieszczyk P., Krupecki K., Maciejewska A., Sawczuk M. The angiotensin converting enzyme gene I/D polymorphism in Polish rowers. Int. J. Sports Med. 2009;30(8):624-627.
  • 6. Cieszczyk P., Maciejewska A., Sawczuk M., Ficek K., Eider J., Jascaniene N. The angiotensin converting enzyme gene I/D polymorphism in ellite Polish and Lithuanian judo players. Biol. Sport 2010;27:119-122.
  • 7. Collins M., Xenophonotos S.L., Cariolou M.A., Mokone G.G., Hudson D.E., Anastasiades L., Noakes T.D. The ACE gene endurance performance during the South African Ironman Triathlons. Med. Sci. Sports Exerc. 2004;36:1314-1320.
  • 8. Gayagay G., Yu B., Hambly B., Boston T., Hahn A., Celermajer D.S., Trent R.J. Elite endurance athletes and the ACE I allele - the role of genes in athletic performance. Hum. Genet. 1998;103(1):48-50.
  • 9. Giaccaglia V., Nicklas B., Kritchevsky S., Mychalecky J., Messier S., Bleecker E., Pahor M. Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise training on knee extensor strength in older individuals. Int. J. Sports Med. 2008;29:40-44.
  • 10. Gordon S.E., Davis B.S., Carlson C.J., Booth F.W. ANG II is required for optimal overload-induced skeletal muscle hypertrophy. Am. J. Physiol. Endocrinol. Metab. 2001;280:E150-E159.
  • 11. Hopkinson N.S., Sharshar T., Ross E.T., Nickol A.H., Dayer M.J., Porcher R., Jonville S., Moxham J., Polkey M.I. Corticospinal control of respiratory muscles in chronic obstructive pulmonary disease. Respir. Physiol. Neurobiol. 2004;41:1-12.
  • 12. Hruskovicová H., Dzurenková D., Selingerová M., Bohus B., Timkanicová B., Kovács L. The angiotensin converting enzyme I/D polymorphism in long distance runners. J. Sports Med. Phys. Fitness. 2006;46(3):509-513.
  • 13. Jones A., Montgomery H.E., Woods D.R. Human performance: a role for the ACE genotype? Exerc. Sport Sci. Rev. 2002;30:184-190.
  • 14. Jones A., Woods D.R. Skeletal muscle RAS and exercise performance. Int. J. Biochem. Cell Biol. 2003;35:855-866.
  • 15. Kruk J. Good scientific practice and ethical principles in scientific research and higher education. Cent. Eur. J. Sports Sci. Med. 2013;1:25–29.
  • 16. Leonska-Duniec A. Genetic research in modern sport. Centr. Eur. J. Sport Sci. Med. 2013;3:19-26.
  • 17. MacArthur D.G., North K.N. Genes and human elite athletic performance. Hum. Genet 2005;116:331-339.
  • 18. Montgomery H.E., Marshall R., Hemingway H., Myerson S., Clarkson P., Dollery C., Hayward M., Holliman D.E., Jubb M., World M., Thomas E.L., Brynes A.E., Saeed N., Barnard M., Bell J.D., Prasad K., Rayson M., Talmud P.J., Humphries S.E. Human gene for physical performance. Nature. 1998;393(6682):221-222.
  • 19. Montgomery H., Clarkson P., Barnard M., Bell J., Brynes A., Dollery C., Hajnal J., Hemingway H., Mercer D., Jarman P., Marshall R., Prasad K., Rayson M., Saeed N., Talmud P., Thomas L., Jubb M., World M., Humphries S. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training. Lancet. 1999;353:541-545.
  • 20. Moreau M.E., Garbacki N., Molinaro G., Brown N.J., Marceau F., Adam A. The kallikrein-kinin system: current and future pharmacological targets. J. Pharmacol. Sci. 2005;99:6-38.
  • 21. Muniesa C.A., Gonzalez-Freire M., Santiago C., Lao J.I., Buxens A., Rubio J.C., Martin M.A., Arenas J., Gomez-Gallego F., Lucia A. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclist, runners and non-athletes. Br. J. Sports Med. 2010;44(12):898-901.
  • 22. Myerson S., Hemingway H., Budget R., Martin J., Humphries S., Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999;87:1313-1316.
  • 23. Nazarov I.B., Woods D.R., Montgomery H.E., Shneider O., Kazakov V.I., Tomilin N.V., Rogozkin V.A. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur. J. Hum. Genet. 2001;9:797-801.
  • 24. Puthucheary Z., Skipworth J.R., Rawal J., Loosemore M., Van Someren K., Montgomery H.E. The ACE gene and human performance: 12 years on. Sports Med. 2011;41(6):433-448.
  • 25. Rankinen T., Wolfarth B., Simoneau J.A., Maier-Lenz D., Rauramaa R., Rivera M.A., Boulay M.R., Chagnon Y.C., Perusse L., Keul J., Bouchard C. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl. Physiol. 2000;88:1571-1575.
  • 26. Rieder M.J., Taylor S.L., Clark A.G., Nickerson D.A. Sequence variation in the human angiotensin converting enzyme. Nat. Genet. 1999;22:59-62.
  • 27. Rigat B., Tiret L., Visvikis S., Breda C., Corvol P., Cambien F. Evidence, from combinet segregation and linkage analysis ACE levels. Am. J. Hum. Genet. 1992a;51:197-205.
  • 28. Rigat B., Hubert C., Corvol P., Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992b;20:1433.
  • 29. Scanavini D., Bernardi F., Castoldi E., Conconi F., Mazzoni G. Increased frequency of the homozygous II ACE genotype in Italian Olympic endurance athletes. Eur. J. Hum. Genet. 2002;10:576-577.
  • 30. Taylor R.R., Mamotte C.D.S., Fallon K., van Bockxmeer F.M. Elite athletes and the gene for angiotesin-converting enzyme. J. Appl. Physiol. 1999;87:1035-1037.
  • 31. Ueda S., Elliott H.L., Morton J.J., Connell J.M. Enhanced pressor response to angiotensin I in normotensive men with the deletion genotype (DD) for angiotensin-converting enzyme. Hypertension 1995;25:1266-1269.
  • 32. Wagner H., Thaller S., Dahse R., Sust M. Biomechanical muscle properties and angiotensin-converting enzyme gene polymorphism: a model-based study. Eur. J. Appl. Physiol. 2006;98:507-515.
  • 33. Williams A.G., Rayson M.P., Jubb M., World M., Woods D.R., Hayward M., Martin J., Humphries S.E., Montgomery H.E. The ACE gene and muscle performance. Nature. 2000;403:614-615.
  • 34. Woods D.R., Humphries S.E., Montgomery H.E. The ACE I/D polymorphism and human physical performance. Trends Endocrinol. Metab. 2000;11:416-420.
  • 35. Woods D., Hickman M., Jamshidi Y., Brull D., Vassiliou V., Jones A., Humphries S., Montgomery H. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum. Genet. 2001;108:230-232.
  • 36. Villard E., Soubrierr F. Molecular biology and genetics of the angiotensin I-converting enzyme: potential implications in cardiovascular diseases. Cardiovasc. Res. 1996;32:999-1007.
  • 37. Yamin C., Amir O., Sagiv M., Attias E., Meckel Y., Eynon N., Sagiv M., Amir R.E. ACE ID genotype affects blood creatine kinase response to eccentric exercise. J Appl. Physiol. 2007;103:2057-2061.
  • 38. Zhang B., Tanaka H., Shono N., Miura S., Kiyonaga A., Shindo M., Saku K. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet. 2003;63:139-144.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-87b24a59-b9d3-4c89-8782-d1638043d27c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.