PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 7 | 2 | 66-75
Article title

Zaburzenia mielinizacji i migracji neuronalnej w patogenezie schizofrenii - poszukiwanie nowych genów kandydujących

Content
Title variants
EN
Disorders of myelination and neuronal migration in the pathogenesis of schizophrenia – looking for new candidate genes
Languages of publication
EN PL
Abstracts
EN
According to the neurodevelopmental hypothesis, schizophrenia may be caused by structural defects or abnormal neuronal circuits, resulting from disturbed early stages of embryonal development of the central nervous system. Disorders detected within white matter structures are considered one of possible causes of subsequent development of schizophrenia. Disorganization of white matter in patients with schizophrenia has been confirmed by neuropathological and neuroimaging studies. Novel neuroimaging techniques (diffusion tensor and magnetization transfer MRI) confirm the presence of white matter volume loss and regional misrouting and/or deficits within neuronal tracts. Schizophrenia is associated both with disorganization of oligodendrocytes participating in myelin synthesis and disturbed expression of proteins controlling this process. Results of post-mortem studies provide an indirect proof of disturbed neuronal migration taking place at early stages of neuroembryogenesis in patients with schizophrenia. It is suggested, that structural abnormalities observed may be caused by disturbed function of proteins which control this process, e. g. reelin, or substances mieacting as regulators of activity of these proteins and their receptors. Such a potential regulating factor is the product of the HAR1 gene, which may constitute the next step in the pathogenesis of schizophrenia.
PL
W myśl hipotezy neurorozwojowej u podłoża schizofrenii leżą deficyty strukturalne lub nieprawidłowe obwody neuronalne powstające na skutek zaburzeń wczesnych etapów rozwoju embrionalnego ośrodkowego układu nerwowego. Uważa się, że jedną z możliwych przyczyn rozwoju schizofrenii mogą być nieprawidłowości obserwowane w obrębie struktur istoty białej. Na zaburzoną organizację istoty białej wśród chorujących na schizofrenię wskazują wyniki badań neuropatologicznych i neuroobrazowych. Nowe techniki badań obrazowych (badania rezonansu magnetycznego z zastosowaniem tensora dyfuzji i transferu magnetyzacji) potwierdzają obecność ubytków objętości struktur istoty białej oraz regionalne zaburzenia przebiegu i/lub ubytki w obrębie włókien nerwowych. W schizofrenii stwierdza się zarówno nieprawidłową organizację zaangażowanych w syntezę mieliny oligodendrocytów, jak i zaburzoną ekspresję białek regulujących przebieg tego procesu. Wyniki badań pośmiertnych wskazują pośrednio także na zaburzenia migracji neuronalnej na wczesnych etapach neuroembriogenezy wśród pacjentów chorujących na schizofrenię. Sugeruje się, że u podłoża obserwowanych nieprawidłowości strukturalnych leżą zaburzenia funkcji białek zaangażowanych w kontrolę przebiegu tego procesu, takich jak reelina, lub cząstek działających jako regulatory aktywności tych białek lub ich receptorów. Takim potencjalnym czynnikiem regulacyjnym jest produkt genu HAR1, który może stanowić kolejne ogniwo w patogenezie schizofrenii.
Discipline
Publisher

Year
Volume
7
Issue
2
Pages
66-75
Physical description
Contributors
  • Klinika Zaburzeń Afektywnych i Psychotycznych Katedry Psychiatrii UM w Łodzi. Kierownik: prof. dr hab. n. med. J. Rabe-Jabłońska
  • Klinika Zaburzeń Afektywnych i Psychotycznych Katedry Psychiatrii UM w Łodzi. Kierownik: prof. dr hab. n. med. J. Rabe-Jabłońska
References
  • 1. Benes F.M., Turtle M., Khan Y., Farol P.: Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatry 1994; 51: 477-484.
  • 2. Bartzokis G., Beckson M., Lu P.H. i wsp.: Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch. Gen. Psychiatry 2001; 58: 461-465.
  • 3. Giedd J.N., Blumenthal J., Jeffries N.O. i ws.: Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 1999; 2: 861-863.
  • 4. Miller E.K.: The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 2000; 1: 59-65.
  • 5. Aboitiz F., Scheibel A.B., Fisher R.S., Zaidel E.: Fiber composition of the human corpus callosum. Brain Res. 1992; 598: 143-153.
  • 6. Lappe-Siefke C., Goebbels S., Gravel M. i wsp.: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 2003; 33: 366-374.
  • 7. Kaifu T., Nakahara J., Inui M. i wsp.: Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J. Clin. Invest. 2003; 111: 323-332.
  • 8. Kagawa T., Ikenaka K., Inoue Y. i wsp.: Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 1994; 13: 427-442.
  • 9. Readhead C., Schneider A., Griffiths I, Nave K.A.: Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 1994; 12: 583-595.
  • 10. Caroni P., Schwab M.E.: Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 1988; 106: 1281-1288.
  • 11. McKerracher L., David S., Jackson D.L. i wsp.: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 1994; 13: 805-811.
  • 12. Baumann N., Pham-Dinh D.: Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 2001; 81: 871-927.
  • 13. Schachner M., Bartsch U.: Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 2000; 29: 154-165.
  • 14. Spencer K.M., Nestor P.G., Perlmutter R. i wsp.: Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc. Natl Acad. Sci. USA 2004; 101: 17288-17293.
  • 15. Hof P.R., Haroutunian V., Copland C. i wsp.: Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem. Res. 2002; 27: 1193-1200.
  • 16. Uranova N.A., Vostrikov V.M., Orlovskaya D.D., Rachmanova V.I.: Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr. Res. 2004; 67: 269-275.
  • 17. Tkachev D., Mimmack M.L., Ryan M.M. i wsp.: Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798-805.
  • 18. Hakak Y., Walker J.R., Li C. i wsp.: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA 2001; 98: 4746-4751.
  • 19. Kirkpatrick B., Conley R.C., Kakoyannis A. i wsp.: Interstitial cells of the white matter in the inferior parietal cortex in schizophrenia: An unbiased cell-counting study. Synapse 1999; 34: 95-102.
  • 20. WrightI.C., Rabe-Hesketh S., Woodruff P.W. iwsp.: Meta-analysis of regional brain volumes in schizophrenia. Am. J. Psychiatry 2000;. 157: 16-25.
  • 21. Sanfilipo M., Lafargue T., Rusinek H. i wsp.: Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch. Gen. Psychiatry2000; 57: 471-480.
  • 22. Sigmundsson T., Suckling J., Maier M. i wsp.: Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry2001; 158: 234-243.
  • 23. Rivkin P., KrautM., Barta P. iwsp.: White matter hyperin-tensity volume in late-onset and early-onset schizophrenia. Int. J. Geriatr. Psychiatry2000; 15: 1085-1089.
  • 24. Sachdev P., Brodaty H.: Quantitative study of signal hyper-intensities on T2-weighted magnetic resonance imaging in late-onset schizophrenia. Am. J. Psychiatry 1999; 156: 1958-1967.
  • 25. Foong J., Symms M.R., Barker G.J. i wsp.: Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain 2001; 124: 882-892.
  • 26. Minami T., Nobuhara K., Okugawa G. i wsp.: Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia. Neuropsychobiology2003; 47: 141-145.
  • 27. Ardekani B.A., Nierenberg J., Hoptman M.J. i wsp.: MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport 2003; 14: 2025-2029.
  • 28. Filippi M., Cercignani M., Inglese M. i wsp.: Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology2001; 56: 304-311.
  • 29. Ito R., Melhem E.R., Mori S. iwsp.: Diffusion tensor brain MR imaging in X-linked cerebral adrenoleukodystrophy. Neurology 2001; 56: 544-547.
  • 30. MaierM., RonM.A.: Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr. Res. 1996; 22: 5-17.
  • 31. Fukuzako H., Fukuzako T., Hashiguchi T. i wsp.: Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am. J. Psychiatry 1999; 156: 1205-1208.
  • 32. Cui Q.: Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol. Neurobiol. 2006; 33: 155-179.
  • 33. Frank M.: MAL, a proteolipid in glycosphingolipid enriched domains: functional implications in myelin and beyond. Prog. Neurobiol. 2000; 60: 531-544.
  • 34. Bifulco M., Laezza C., Stingo S., Wolff J.: 2',3'-Cyclic nucleotide 3'-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc. Natl Acad. Sci. USA 2002; 99: 1807-1812.
  • 35. Tanaka J., Sobue K.: Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells. J. Neurosci. 1994; 14: 1038-1052.
  • 36. Saleh M.C., Espinosa de los Monteros A., de Arriba Zerpa G.A. i wsp.: Myelination and motor coordination are increased in transferrin transgenic mice. J. Neurosci. Res. 2003; 72: 587-594.
  • 37. Riethmacher D., Sonnenberg-Riethmacher E., Brinkmann V. i wsp.: Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 1997; 389: 725-730.
  • 38. HaroutunianV., Katsel P., Dracheva S., Davis K.L.: The human homolog of the QKI gene affected in the severe dysmyelination "quaking" mouse phenotype: downregulat-ed in multiple brain regions in schizophrenia. Am. J. Psychiatry2006; 163: 1834-1837.
  • 39. Hardy R.J.: Molecular defects in the dysmyelinating mutant quaking. J. Neurosci. Res. 1998; 51: 417-422.
  • 40. Uranova N.A., Vostrikov V.M., Orlovskaya D.D., Rachmanova V.I.: Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr. Res. 2004; 67: 269-275.
  • 41. Griffiths I., Klugmann M., Anderson T. i wsp.: Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 1998; 280: 1610-1613.
  • 42. Nave K.A.: Neurological mouse mutants and the genes of myelin. J. Neurosci. Res. 1994; 38: 607-612.
  • 43. Weiss M.D., Hammer J., Quarles R.H.: Oligodendrocytes in aging mice lacking myelin-associated glycoprotein are dystrophic but not apoptotic. J. Neurosci. Res. 2000; 62: 772-780.
  • 44. Connor J.R., Roskams A.J., Menzies S.L., Williams M.E.: Transferrin in the central nervous system of the shiverer mouse myelin mutant. J. Neurosci. Res. 1993; 36: 501-507.
  • 45. Li Z., Zhang Y., Li D., Feng Y.: Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J. Neurosci. 2000; 20: 4944-4953.
  • 46. Katsel IP, Davis K.L., Haroutunian V: Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr. Res. 2005; 79: 157-173.
  • 47. Bhat M.A., Rios J.C., Lu Y. i wsp.: Axonglia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 2001; 30: 369-383.
  • 48. Boyle M.E., Berglund E.O., Murai K.K. i wsp.: Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 2001; 30: 385-397.
  • 49. Poliak S., Peles E.: The local differentiation of myelinated axons at nodes of Ranvier. Nat. Rev. Neurosci. 2003; 4: 968-980.
  • 50. Rios J.C., Rubin M., St Martin M. i wsp.: Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J. Neurosci. 2003; 23: 7001-7011.
  • 51. Anderson S.A., Eisenstat D.D., Shi L., Rubenstein J.L.: Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 1997; 278: 474-476.
  • 52. Lavdas A.A., Grigoriou M., Pachnis V., Parnavelas J.G.: The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 1999; 19: 7881-7888.
  • 53. Marin-Padilla M.: Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances. Z. Anat. Entwicklungsgesch. 1972; 136: 125-142.
  • 54. Rakic IP: Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 1974; 183: 425-427.
  • 55. Fatemi S.H., Earle J.A., McMenomy T.: Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 2000; 5: 654-663, 571.
  • 56. Guidotti A., Auta J., Davis J.M. i wsp.: Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a post mortem brain study. Arch. Gen. Psychiatry 2000; 57: 1061-1069.
  • 57. Knable M.B., Torrey E.F., Webster M.J., Bartko J.J.: Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res. Bull. 2001; 55: 651-659.
  • 58. Tabares-Seisdedos R., Escamez T., Martinez-Gimenez JA. i wsp.: Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from mediterranean Spain: a preliminary study. Neuroscience 2006; 139: 1289-1300.
  • 59. Lambert de Rouvroit C., Goffinet A.M.: The reeler mouse as a model of brain development. Adv. Anat. Embryol. Cell Biol. 1998; 150: 1-106.
  • 60. Curran T., D'Arcangelo G.: Role of reelin in the control of brain development. Brain Res. Brain Res. Rev. 1998; 26: 285-294.
  • 61. Pesold C., Impagnatiello F., Pisu M.G. i wsp.: Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc. Natl Acad. Sci. USA 1998; 95: 3221-3226.
  • 62. Sheppard A.M., Pearlman A.L.: Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 1997; 378: 173-179.
  • 63. Impagnatiello F., Guidotti A.R., Pesold C. i wsp.: Adecrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl Acad. Sci. USA 1998; 95: 15718-15723.
  • 64. Pollard K.S., Salama S.R., Lambert N. i wsp.: An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006; 443: 167-172.
  • 65. Tissir F., Goffinet A.M.: Reelin and brain development. Nat. Rev. Neurosci. 2003; 4: 496-505.
  • 66. Tissir F., Lambert de Rouvroit C., Goffinet A.M.: The role of reelin in the development and evolution of the cerebral cortex. Braz. J. Med. Biol. Res. 2002; 35: 1473-1484.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-87799496-7c8e-4dea-8bf0-76bcdc82b667
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.