PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 40 | 1 | 133-149
Article title

O-GlcNAcylation, steroid hormone receptors and cancer

Content
Title variants
PL
O-GlcNAcylacja, receptory dla steroidów i nowotwory
Languages of publication
EN
Abstracts
EN
The addition of a single residue of O-linked N-acetylglucosamine (O-GlcNAc) to serine or threonine is a post-translational modification (O-GlcNAcylation) of proteins found in the cytoplasm or the nucleus. This dynamic modification is dependent on the environmental glucose concentration. O-GlcNAc modification is catalysed by a glycosyltransferase named O-linked N-acetylglucosaminyltransferase (OGT), and O-GlcNAc residue is removed by the antagonistic enzyme β-N-acetylglucosaminidase (O-GlcNAcase; OGA). Cytosolic O-GlcNAcylation is important for the proper transduction of signalling cascades, whereas nuclear O-GlcNAc is crucial for the transcriptional regulation. O-GlcNAcylation is also important in the regulation of the transcriptional activity of steroid hormone receptors. Both O-GlcNAc transferase and O-GlcNAcase are found in all tissues and have been shown to be essential for development in vertebrates, which underscores their fundamental roles in vital processes as well as in pathological conditions such as neoplastic transformation.
PL
Glikozylacja polegająca na przyłączeniu pojedynczych reszt β-N-acetylo- D-glukozaminy do reszt seryny lub treoniny polipeptydu wiązaniem O-glikozydowym (O-GlcNAc), jest powszechną modyfikacją białek jądrowych i cytoplazmatycznych. Modyfikacja ta pozostaje w ścisłym związku z dostępnością glukozy. β-N-acetyloglukozaminylotransferaza (O-GlcNAc transferaza, OGT) jest enzymem odpowiedzialnym za katalityczne przyłączenie reszt O-GlcNAc, natomiast β-N-acetylo-D-glukozaminidaza (OGA) reszty te odłącza. Proces O-GlcNAcylacji zachodzący w cytozolu jest istotny z punktu widzenia transmisji sygnału komórkowego, natomiast przyłączanie reszt O-GlcNAc na terenie jądra wpływa na proces transkrypcji. Wykazano, że proces O-GlcNAcylacji moduluje regulację aktywności transkrypcyjnej receptorów hormonów steroidowych. Oba enzymy, O-GlcNAc transferaza i β-N-acetylo- D-glukozaminidaza wykrywane są we wszystkich tkankach i jak wykazano, niezbędne są dla prawidłowego rozwoju organizmu, jak również mogą uczestniczyć w procesie transformacji nowotworowej.
Publisher

Year
Volume
40
Issue
1
Pages
133-149
Physical description
Contributors
author
  • Oddział Urologii Ogólnej, Onkologicznej i Czynnościowej, Wojewódzki Szpital Specjalistyczny im. M. Kopernika w Łodzi, Pabianicka 62, 93-513 Łódź, wilkosz@onet.pl
  • Oddział Urologii Ogólnej, Onkologicznej i Czynnościowej, Wojewódzki Szpital Specjalistyczny im. M. Kopernika w Łodzi, Pabianicka 62, 93-513 Łódź
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź
author
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź
References
  • Hanover JA, Krause MW, Love DC. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol. 2012; 13: 312 321.
  • Haltiwanger RS, Blomberg MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem. 1992; 267: 9005-9013.
  • Zeidan Q, Wang Z, De Maio A, Hart GW. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol Biol Cell. 2010; 21: 1922-1936.
  • Marshall S, Nadeau O, Yamasaki K. Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem. 2004; 279: 35313-35319.
  • McClain DA, Crook ED. Hexosamines and insulin resistance. Diabetes. 1996; 45: 1003-1009.
  • Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem. 1999; 274: 32015 32022.
  • Rao FV, Dorfmueller HC, Villa F, Allwood M, Eggleston IM, van Aalten DM. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. 2006; 25: 1569-1578.
  • Dong DL, Hart GW. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem. 1994; 269: 19321-19330.
  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem. 2001; 276: 9838 9845.
  • Hu P, Shimoji S, Hart GW. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 2010; 584: 2526-2538.
  • Wang J, Torii M, Liu H, Hart GW, Hu ZZ. dbOGAP - an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics. 2011; 12: 91.
  • Copeland RJ, Han G, Hart GW. O-GlcNAcomics-Revealing roles of O GlcNAcylation in disease mechanisms and development of potential diagnostics. Proteomics Clin Appl. 2013; doi: 10.1002/prca.201300001.
  • Cheng X, Hart GW. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. J Biol Chem. 2001; 276: 10570.
  • Butkinaree C, Park K, Hart GW. O-linked beta-N-acetylglucosamine (O GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta. 2010; 1800: 96-106.
  • Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta. 2009; 1790: 863-868.
  • Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007; 447: 407-412.
  • Fardini Y, Dehennaut V, Lefebvre T, Issad T. O-GlcNAcylation: a new cancer hallmark? Front Endocrinol (Lausanne). 2013; 4: 99.
  • Sakabe K, Wang Z, Hart GW. O-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA. 2010; 107: 19915–19920.
  • Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011; 480: 557–560.
  • Sakabe K, Hart GW. O-GlcNAc transferase regulates mitotic chromatin dynamics. J Biol Chem. 2010; 285: 34460–34468.
  • Slawson C, Lakshmanan T, Knapp S, Hart GW. Amitotic GlcNAcylation/phosphorylation signaling complex alters the post-translational state of the cytoskeletal protein vimentin. Mol Biol Cell. 2008; 19: 4130–4140.
  • Schultz J, Pils B. Prediction of structure and functional residues for O GlcNAcase, a divergent homologue of acetyltransferases. FEBS Lett. 2002; 529: 179-182.
  • Toleman C, Paterson AJ, Whisenhunt TR, Kudlow JE. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J Biol Chem. 2004; 279: 53665-53673.
  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997; 89: 341-347.
  • Sawarkar R, Paro R. Interpretation of developmental signaling at chromatin: the Polycomb perspective. Dev Cell. 2010; 19: 651-661.
  • Kerppola TK. Polycomb group complexes--many combinations, many functions. Trends Cell Biol. 2009; 19: 692-704.
  • Schwartz YB, Pirrotta V. A. little bit of sugar makes polycomb better. J Mol Cell Biol. 2009; 1: 11-12.
  • Gambetta K. Oktaba J. Müller J. Essential role of the glycosyltransferase Sxc/Ogt in polycomb repression. Science. 2009; 325: 93-96.
  • Lewis BA. O-GlcNAcylation at promoters, nutrient sensors, and transcriptional regulation. Biochim Biophys Acta. 2013; 1829: 1202-1206.
  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009; 324: 929-930.
  • Tahiliani M, Koh KP, Shen Y. Conversion of 5-methylcytosine to 5-hydroxy-methylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324: 930–935.
  • Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010; 466: 1129-1133.
  • Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O GlcNAcylation during gene transcription. Nature. 2013; 493: 561–564.
  • Shi FT, Kim H, Lu W, He Q, Liu D, Goodell MA, et al. Ten-eleven translocation 1 (Tet1) is regulated by O-GlcNAc transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem. 2013; 288: 20776-20784.
  • Williams K, Christensen J, Helin K. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep. 2011; 13: 28-35.
  • Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5 methylcytosine oxidation. Genes Dev. 2011; 25: 2436-2452.
  • Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013; 32: 645-655.
  • Bryś M. Androgens and androgen receptor: do they play a role in breast cancer? Med Sci Monit. 2000; 6: 433-438.
  • Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta. 2010; 1803: 641-649.
  • Treviño LS, Weigel NL. Phosphorylation: a fundamental regulator of steroid receptor action. Trends Endocrinol Metab. 2013; 24: 515-524.
  • Hammes SR, Levin ER. Minireview: Recent advances in extranuclear steroid receptor actions. Endocrinology. 2011; 152: 4489-4495.
  • Bowe DB, Sadlonova A, Toleman CA, Novak Z, Hu Y, Huang P, et al. O GlcNAc integrates the proteasome and transcriptome to regulate nuclear hormone receptors. Mol Cell Biol. 2006; 26: 8539-8550.
  • Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci. 2010; 35: 547-555.
  • Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci. 2010; 35: 547–555.
  • Liu K, Paterson AJ, Chin E, Kudlow JE. Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked GlcNAc to beta cell death. Proc Natl Acad Sci U S A. 2000; 97: 2820-2825.
  • Chou TY, Dang CV, Hart GW. Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci U S A. 1995; 92: 4417-4421.
  • Yang YR, Suh PG. O-GlcNAcylation in cellular functions and human diseases. Adv Biol Regul. 2013; S2212-4926: 71-77.
  • Gu Y Mi W, Ge Y, Liu H, Fan Q, Han C. GlcNA- cylation plays an essential role in breast cancer metastasis. Cancer Res. 2010; 70: 6344–6351.
  • Krześlak A, Forma E, Bernaciak M, Romanowicz H, Bryś M. Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med. 2011; 12: 61–65.
  • Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta. 2011; 1812: 514–519.
  • Krześlak A, Pomorski L, Lipinska A. Elevation of nucleocytoplasmic beta-N-acetylglucosaminidase (O-GlcNAcase) activity in thyroid cancers. Int J Mol Med. 2010; 25: 643–548.
  • Sinclair M, Syrzycka MS, Macauley T, Rastgardani I, Komljenovic DJ, et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A. 2009; 106: 13427 13432.
  • Myers SA, Panning B, Burlingame AL. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2011; 108: 9490-9495.
  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010; 29: 2831–2842.
  • LynchTP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ. Critical role of O-Linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem. 2012; 287: 11070-11081.
  • Dahl E, Sadr-Nabavi A, Klopocki E, Betz B, Grube S, Kreutzfeld R. Systematic identification and molecular characterization of genes differentially expressed in breast and ovarian cancer. J Pathol. 2005; 205: 21–28.
Document Type
paper
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-8585d7f4-0cdf-4593-80ae-8cc035e9f953
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.