PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 117 | 102-121
Article title

Antimicrobial activity of some novel triazolo quinoline derivatives

Content
Title variants
Languages of publication
EN
Abstracts
EN
Some triazolo quinoline derivatives were synthesized and their structures were confirmed by IR, 1H NMR, 13C NMR and mass spectroscopy. Screening of all these synthesized compounds were done in vitro against bacteria and three fungal strains in dimethyl sulphoxide and N, N-dimethyl formamide. It is observed that N, N-dimethyl formamide is good solvent for these compounds in selected strains.
Year
Volume
117
Pages
102-121
Physical description
Contributors
  • Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 360005, Gujarat, India
  • Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot - 360005, Gujarat, India
References
  • [1] M. Lydy, J. Belden, C. Wheelock, B. Hammock, D. Denton, Challenges in regulating pesticide mixtures, Eco Soc. 9 (2004) 1-13.
  • [2] S. U. Khan, K. R. Atanasova, W. S. Krueger, A. Remirez, G. C. Fray, Epidemiology, geographical distribution and economic consequences of swine zoonoses: a narrative review, Emer. Micro. Inf. 2 (2013) 92-103.
  • [3] J. Berdy, Thoughts and facts about antibiotics: where we are know and where we are heading, J. Antibiotics, 65 (2012) 385-395.
  • [4] C. G. Daughton, I. S. Ruhoy, Lower-dose prescribing: minimizing “side effect” of pharmaceuticals on society and the environment, Sci. Total Environ. 443, (2013) 324-337.
  • [5] S. B. Singh, Confronting the challenges of discovery of novel antibacterial agents, Bioorg. Med. Chem. Let. 24 (2014) 3683-3689.
  • [6] H. Kourai, F. Machikawa, T. Horie, K. Takeichi, I. Shibasaki, The antimicrobial characteristics of quaternary ammonium salts. Part IX. Quantitative structure-activity correlation on antimicrobial activity and hydrophobicity of N-alkyl pyridinium iodide derivatives. J. Antibact. Antifung. Agents, 11 (1983) 553–562.
  • [7] H. Kourai, Y. Manabe, E. Matsutani, Y. Hasegawa, K. Nakagawa, Antimicrobial activities of alkylallyldimethylammonium iodides and alkylallyl diethyl ammonium iodides. J. Antibact. Antifung. Agents, 23 (1995) 271–280.
  • [8] H. Kourai, F. Machikawa, T. Horie, K. Takeichi, I. Shibasaki, The antimicrobial characteristics of quaternary ammonium salts. Part VII. Quantitative relation between antimicrobial activity and adsorbability of N-octylquinolinium iodide on Escherichia Coli K12. J. Antibact. Antifung. Agents, 11 (1983) 51–54.
  • [9] T. Maeda, S. Goto, Y. Manabe, K. Okazaki, H. Nagamune, H. Kourai, Bactericidal action of N-alkylcyanopyridinium bromides against Escherichia Coli K12 W3110. Biocontrol Sci. 1, (1996) 41–49.
  • [10] K. Okazaki, T. Maeda, H. Nagamune, H. Kourai, Quantitative structure-activity relationship of antibacterial dodecylpyridinium iodide derivatives. Biocontrol Sci. 1, (1996) 51–59.
  • [11] B. Kaya, B. N. Saglık, S. Levent, Y. Ozkay, and Z. A. Kaplancıklı, Synthesis of some novel 2 substituted benzthiazole derivatives containing benzylamine moiety as momoamine oxidase inhibitory agents, J Enzyme Inhib. Med. Chem. 31 (2016) 1654-1661.
  • [12] K. S. Bhat, B. Poojara, D. J. Prasad, P. Naik, B. S. Hallo, Synthesis and antitumor activity studies of some new fused 1,2,4-triazole derivatives carrying 2, 4-dichloro5-fluorophenyl moiety, Eur. J. Med. Chem. 44 (2009) 5066-5070.
  • [13] Donatella Verbanac, Ritu Malik, Mahesh Chand, Khushbu Kushwaha, Monika Vashist, Mario Matijasic, Visnja Stepanic, Mihaela Peric, Hana Cˇipcic Paljetak, Luciano Saso and Subhash C. Jain, Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles, J Enzyme Inhib Med Chem, 31 (2016) 104–110.
  • [14] K. B. Pal, M. Mahanti, X. Huang, S. Persson, A.P. Sundin, F. R. Zetterberg, S. Oredsson, H. Leffler, U. J. Nilsson, Quinoline Galactose hybrids bind selectively with high affinity to a gelectin-8 N-terminal domain, Org. Biomol. Chem. 16 (2018) 6295-6305.
  • [15] Bloom and P. L. K. Hung, The effect of Dye Structure on Order Parameter in a Nematic Liquid Crystalline Host, Mol. Cryst. Liq. Cryst. 40 (1977) 213-221.
  • [16] Y. C. Duan, Y. C. Zheng, X. C. Li, M. M. Wang, X. W. Ye, Y. Y. Guan, G. Z. Liu, J. X. Zheng, H. M. Liu, Design, Synthesis and antiproliferative activity studies of novel 1,2,3-triazolo-dithiocarbonate-urea hybrids, Eur. J. Med. Chem. 64 (2013) 99-110.
  • [17] M. Asif, Anti-neuropathic and anticonvulsant activities of various substituted triazoles analogues, Chem. Int. 1, (2015) 174-183.
  • [18] Baba, N. Kawamura, H. Mukino, Y. Ohta, S. Taketomi, T. Sohda, Studies on disease-Modifying Antirhumetic Drugs: Synthesis of novel quinoline and Quinazoline derivatives and their anti-inflammatory Effect, J. Med. Chem. 39 (1996) 5176-5182.
  • [19] T. Mekonnen, P. Mussone, H. Khalil, D. Bressler, Progress in bio-based plastics and plasticizing modifications, J. Mater. Chem. A. 1 (2013) 13379-13398.
  • [20] Y. Zhang, S. K. Hau, H. L. Yip, Y. Sun, O. Acton, A. K. Y. Jen, Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione, Chem. Mater. 22, (2010) 2696-2698.
  • [21] S. Mohapatra and G. B. Nando, Chemical Modification of Natural Rubber in the Latex Stage by Grafting Cardanol, a Waste from the Cashew Industry and a Renewable Resource, Eng. Chem. Res. 52 (2013) 5951-5957.
  • [22] G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. R. Ali, M. M. Alam, A review exploring biological activities of hydrazones, A review exploring biological activities of hydrazones, J. Pharm. BioAllied Sci. 6, (2014) 69-80.
  • [23] H. Shridhar, J. Keshavayya, H. J. Hoskeri, R. A. S. Ali, Synthesis of Some Novel Bis 1, 3, 4-Oxadiazole Fused Azo Dye Derivatives as Potent Antimicrobial Agents, Int. J. Pure Appl. Chem. 1 (2011) 119-129.
  • [24] M. Alswah, A. Ghiaty, A. El-Morsy, K. El-Gamal, Synthesis and Biological Evaluation of Some [1,2,4]Triazolo [4,3-a]quinoxaline Derivatives as Novel Anticonvulsant Agents, Org. Chem. 2013, (2013) 1-7.
  • [25] D. Verbanac, R. Malik, M. Chand, K. Kushwaha, M. Vashist, M. Matijasic, V. Stepanic, M. Peric, H. C. Paljetak, L. Saso, S. C. Jain, Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles, J. Enzyme Inhib. Med. Chem. 31 (2016) 104–110.
  • [26] S. Eswaran, A. V. Adhikari, N. S. Shetty, Synthesis and antimicrobial activity of novel quinoline derivatives carrying 1,2,4-triazole moiety, Eur. J. Med. Chem. 44 (2009) 4637-4647.
  • [27] G. Swagatika, K. M. Milan, B. Mritunjay, P. Saroj, K. Sunil, Synthesis, characterisation and antifungal activity of some new 1,2,4 - triazolophenyl quinoline derivatives, J. Pharm. Res. 2 (2009) 1237-1239.
  • [28] V. Mathew, J. Keshavayya, V. P. Vaidya, D. Giles, Studies on synthesis and pharmacological activities of 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their dihydro analogues, Eur. J. Med. Chem. 42, (2007) 823-840.
  • [29] S. G. Khanage, A. Raju, P. B. Mohite, R. B. Pandhare, Analgesic activity of some 1,2,4-Triazole Heterocyclic clubbed with Pyrazole, Tetrazole, Isoxazole and Pyrimidine, Adv. Pharm. Bull. 3 (2013) 13-18.
  • [30] M. A. Hussein, R. M. Shaker, M. A. Ameen, M. F. Mohammed, Synthesis, anti-inflammatory, analgesic and antibacterial activity of some triazole, Triazolothiadiazole, and Triazolothiadiazine derivatives, Arch. Pharm. Res. 34 (2011) 1239-1250.
  • [31] M. Asif, Analgesic and Anti-inflammatory Activities of different Triazole Analogues, PharmaTutor 2 (2014) 62-71.
  • [32] L. J. Guo, C. X. Wei, J. H. Jia, L. M. Zhao, Z. S. Quan, Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity, Eur. J. Med. Chem. 44 (2009) 954-958.
  • [33] M. Mahdavia, T. Akbarzadeha, V. Sheibanib, M. Abbasia, L. Firoozpoura, S. A. Tabatabaic, A. Shafieed, A. Foroumadi, Synthesis of Two Novel 3-Amino-5-[4-chloro-2-phenoxyphenyl]-4H-1,2,4- triazoles with Anticonvulsant Activity, Iranian J. Pharm. Res. 9 (2010) 265-269.
  • [34] M. Asif, Anti-neuropathic and anticonvulsant activities of various substituted triazoles analogues, Chem. Int. 1 (2015) 174-183
  • [35] M. Asif, Antiviral and antiparasitic activities of various substituted triazole derivatives: A mini review, Chem. Int. 1 (2015) 71-80.
  • [36] M. N. Zemtsova, A. V. Zimichev, P. L. Trakhtenberg, Y. N. Klimochkin, M. V. Leonova, S. M. Balakhnin, N. I. Bormotov, O. A. Serova and E. F. Belanov, Synthesis and antiviral activity of some several quinoline derivatives, Pharm. Chem. J. 45 (2011) 267-269.
  • [37] M. A. Hinen, S. A. A. EI Bialy, F. E. Goda, M. N. A. Nasr, H. M. Eisa, [1,2,4]Triazolo[4,3-a]quinoxaline:synthesis, antiviral, and antimicrobial activities, Med Chem. Res 21 2012 2368-2378.
  • [38] F. A. Bassyouni, S. M. Abu-Baker, K. Mahmoud, M. Moharam, S. S. El-Nakkadyb, M. A. Rehime, Synthesis and biological evaluation of some new triazolo[1,5-a]quinoline derivatives as anticancer and antimicrobial agents, Royal Soc. Chem. 4 (2014) 24131-24141.
  • [39] B. N. Reddy, P. V. G. Reddy, B. R. P. Reddy, S. Reddy, S. M. Reddy, M. Pathak, Novel7-Nitro-1-(Piperidin-4-yl)-4,5-Dihydro-[1,2,4]Triazolo[4,3-a]Quinoline-Sulphonamide Derivatives as Antimicrobial Agents: Design, Synthesis, and Bio-Activity, J. Hetero Chem. 53 (2016) 1416-1423.
  • [40] H. A. Abuelizz, M. Marzouk, H. Ghabbour, R. Al-Salahi, Synthesis and anticancer activity of new quinazoline derivatives, Saudi Pharm. J. 25 (2017) 1047–1054.
  • [41] M. V. N. de Souza, K. C. Pais, C. R. Kaiser, M. A. Peralta, M. L. Ferreira, M. C. S. Lourenco, Synthesis and vitro antituberculer activity of a series of quinoline derivatives, Bioorg. Med. Chem. 17 (2009) 1474-1480.
  • [42] S. Zhang, Z. Xu, C. Gao, Q. C. Ren, L. Chang, Z. S. Lv, L. S. Feng, Triazole derivatives and their anti-tubercular activity, Eur. J. Med. Chem. 38 (2017) 501-513.
  • [43] M. M. Maste, R. Ainapure, P. B. Patil, A. R.Bhat, Triazolone and their Derivatives for anti-Tubercular Activities, Asian J. Res. Chem. 4 (2011) 1050-1054.
  • [44] Y. Li, H. L. Ma, L. Han, W. Y. Liu, B. X. Zhao, S. L. Zhang, J. Y. Miao, Novel ferrocenyl derivatives exert anti-cancer effect in human lung cancer cells in vitro via inducing G1- phase arrest and senescence, Acta Pharmacol. Sin. 34 (2013) 960–968.
  • [45] S. Jantová, S. Letašiová, A. Repický, R. Ovádeková, B. Lakatoš, The effect of 3-(5-nitro-2-thienyl)-9-chloro-5-morpholin-4-yl[1,2,4]triazolo[4,3-c]quinazoline on cell growth, cell cycle, induction of DNA fragmentation, and activity of caspase 3 in murine leukemia L1210 cells and fibroblast NIH-3T3 cells, Cell Biochem. 24 (2006) 519-530.
  • [46] J. A. Riddick, W. B. Bunger, T. Sakano, Organic solvents-physical properties and methods of purification, Techniques of Chemistry, New York, (1986).
  • [47] J. Parekh, P. Nair, S. Baluja, S. Chanda, Synthesis and antimicrobial activity of some Sciff bases deried from 4-amino benzoic acid, J. Serb. Chem. Soc. 70 (2005) 1155-1161.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-856bb7a7-47f5-4980-a5e1-27762d4fb604
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.