Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 28 | 46-55

Article title

CHITOSAN AND META-TOPOLIN SUPPLEMENTATION OF THE MULTIPLICATION MEDIA OF VITIS VINIFERA L.

Content

Title variants

Languages of publication

EN

Abstracts

EN
We investigated the efficiency of chitosan (CH) and meta-topolin (mT) on in vitro growth and adaptation to greenhouse conditions of Vitis vinifera cv. Johanniter and cv. Hibernal. After the initiation stage, we transferred explants to Woody Plant Media (WPM) with chitosan (molecular weight 3.33 kDa) at a concentration of 10, 20, and 40 ppm or to WPM with mT at a concentration of 0.5, 1.0, and 2.0 mg l–1. WPM without CH or mT served as a control. Among the tested combinations, WPM with 10 ppm of CH led to the maximum mean root length (12.18 cm and 12.65 cm for the Hibernal and Johanniter cultivars, respectively) and the number of new leaves (5.9 and 8.15 for the Hibernal and Johanniter cultivars, respectively). As the CH concentration in the medium increased, the length of shoots and roots decreased. We found the highest percentage of acclimatised plants on WPM (cv. Hibernal) and WPM with 40 ppm of CH (cv. Johanniter). The addition of mT had a negative effect on the morphological traits we measured, regardless of the concentration. Leaves of explants from WPM with mT were yellower and redder compared with the control. None of the explants obtained on this medium produced roots.

Contributors

  • Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology Szczecin, Słowackiego 17 Str., 71–434 Szczecin, Poland
  • Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Str., 71–434 Szczecin, Poland

References

  • [1] Mijowska K, Ochmian I, Oszmiański J; (2016) Impact of cluster zone leaf removal on grapes cv. Regent polyphenol content by the UPLC-PDA/MS method. Molecules 21(12), 1688. DOI:10.3390/molecules21121688
  • [2] Kinfe B, Feyssa T, Bedada G; (2017) In vitro micropropagation of grape vine (Vitis vinifera L.) from nodal culture. Afr J Biotechnol, 16(43), 2083–2091. DOI:10.5897/AJB2016.15803
  • [3] Figiel-Kroczyńska M, Krupa-Małkiewicz M, Ochmian I; (2022) Effect of Actisil (Hydroplus™), organic supplements, and pH of the medium on the micropropagation of Vaccinium corymbosum. Acta Sci Pol Hortorum Cultus 21(5), 25–37. DOI:10.24326/asphc.2022.5.3
  • [4] Skiada F, Grigoriadou K, Eleftheriou E; (2010) Micropropagation of Vitis vinifera L. cv. ‘Malagouzia’ and ‘Xinomavro’. Open Life Sci 5(6), 839–852. DOI:10.2478/s11535–010–0073–6
  • [5] Melyan G, Sahakyan A, Harutyunyan A; (2015) Micropropagation of grapevine (Vitis vinifera L.) seedless cultivar ‘Parvana’ through lateral bud development. Vitis 54, 253–255. DOI:10.5073/vitis.2015.54.special-issue.253–255
  • [6] Coelho N, Romano A; (2022) Impact of chitosan on plant tissue culture: recent applications. Plant Cell Tiss Org Cult 148, 1–13. DOI:10.1007/s11240–021–02156–6
  • [7] Figiel-Kroczyńska M, Ochmian I, Krupa-Małkiewicz M; (2022) Effect of chitosan-based spraying on the quality of highbush blueberries (Sunrise cultivar). Prog Chem Appl Chitin Deriv 27, 67–78. DOI:10.15259/PCACD.27.005
  • [8] Krupa-Małkiewicz M, Jurkiewicz A, Ochmian I, Figiel-Kroczyńska M; (2022) Effect of chitosan and meta-Topolin in micropropagation of Vaccinium corymbosum. Prog Chem Appl Chitin Deriv 27, 154–161. DOI:10.15259/PCACD.27.011
  • [9] Veraplakorn V, Kudan S; (2021) Chitosan elicitor stimulation of in vitro growth and ex vitro acclimatization of Lantana camara L. Agr Nat Resour 55, 431–439. DOI:10.34044/j.anres.2021.55.3.13
  • [10] Kruczek A, Krupa-Małkiewicz M, Ochmian I; (2021) Micropropagation, rooting, and acclimatization of two cultivars of goji (Lycium chinense). Not Bot Horti Agro Cluj-Napca 49(2), 12271. DOI:10.15835/nbha49212271
  • [11] Ochmian I, Lachowicz S, Krupa-Małkiewicz M; (2022) The effect of different molecular weights of chitosan on the yield, quality, and health-promoting properties of strawberries. Prog Chem Appl Chitin Deriv 27, 194–203. DOI:10.15259/PCACD.27.015
  • [12] Krupa-Małkiewicz M, Fornal N; (2018) Application of chitosan in vitro to minimize adverse effects of salinity in Petunia× atkinsana D. don. J Ecol Eng 19(1), 143–149. DOI:10.12911/22998993/79410
  • [13] Krupa-Małkiewicz M, Smolik B; (2019) Alleviative effects of chitosan and ascorbic acid on Petunia×atkinsiana D. Don under salinity. Eur J Horti Sci 84(6), 359–365. DOI:10.17660/eJHS.2019/84.6.5
  • [14] Lloyd G, McCown B; (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Propag Soc 30, 421–427.
  • [15] Bartkowiak A; (2001) Binary Polyelectrolyte Microcapsules Based on Natural Polysaccharides. Wydawnictwo Politechniki Szczecińskiej, Szczecin University of Technology, Szczecin.
  • [16] Hunterlab; (2012) Measuring colour using Hunter L, a, b versus CIE 1976 L*a*b*. http://www.hunterlab.com/an-1005b.pdf
  • [17] Diab AA, Khalil SM, Ismail RM; (2011) Regeneration and micropropagation of grapevine (Vitis vinifera L.) through shoot tips and axillary buds. IJABR, 2(4), 484–491.
  • [18] Yerbolova LS, Ryabushkina NA, Oleichenko SN, Kampitova GA; Galiakparov NN; (2013) The effect of growth regulators on in vitro culture of some Vitis vinifera L. cultivars. World Appl Sci J 23(1), 76–80. DOI:10.5829/idosi.wasj.2013.23.01.13043
  • [19] Chee R, Pool RM; (1982) The effects of growth substances and photoperiod on the development of shoot apices of Vitis cultured in vitro. Sci Hort, 16(1),17–27.
  • [20] Cai Z, Kastell A, Mewis I, Knorr D, Smetanska I; (2012) Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tiss Org Cult 108, 401–409. DOI:10.1007/s11240–011–0051–3
  • [21] Obsuwan K, Yoodee S, Uthairatanakij A; (2010) Application of chitosan on in vitro growth of Rhynchostylis gigantea protocorms and seedlings. I Int Orchid Symp 878, 283–288. DOI:10.17660/ActaHortic.2010.878.35
  • [22] Sopalun K, Thammasiri K, Ishikawa K; (2010) Effects of chitosan as the growth stymulator for Grammatophyllum speciosum in vitro culture. Int J Innov Res Sci Eng Technol 4(11), 828–830.
  • [23] Ochmian I, Malinowski R, Kubus M, Malinowska K, Sotek Z, Racek M; (2019) The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Sci Hort 257, 108690. DOI:10.1016/j.scienta.2019.108690
  • [24] Krupa-Małkiewicz M, Calomme M; (2021) Actisil application affects growth, flowering, and biochemical parameters in petunia in vitro and greenhouse. Plant Cell Tiss Org Cult 146, 449–459. DOI:10.1007/s11240–021–02078–3

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-84fb4615-655b-4539-a072-3daadf7dceb4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.