PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 41 | 1 | 65-91
Article title

Zaburzenia procesu O-GlcNAcylacji w nowotworach

Content
Title variants
EN
Alterations of O-GlcNAcylation process in cancers
Languages of publication
PL
Abstracts
EN
O-GlcNAcylation is a post-translational modification involving the addition of a N-acetylglucosamine moiety to the serine/threonine residues of cytosolic or nuclear proteins. Two enzymes are responsible for cyclic O-GlcNAcylation: O-GlcNAc transferase (OGT) which catalyzes the addition of the GlcNAc moiety from UDP-GlcNAc to target proteins and O-GlcNAcase (OGA) which catalyses the hydrolytic removal of the sugar moiety from proteins. Dynamic and reversible O-GlcNAcylation is emerging as an important regulator of diverse cellular processes, such as signal transduction, metabolism, transcription, translation, proteasomal degradation and cell cycle. O-GlcNAcylation occurs on serine or threonine residues of proteins at sites that may also be phosphorylated. Therefore, an extensive crosstalk exists between phosphorylation and O-GlcNAcylation. Recent studies indicate that increased O-GlcNAcylation is a general feature of cancer. Elevated O-GlcNAcylation (hyper-OGlcNAcylation) occurs in many human malignancies including solid tumors such as lung, prostate, breast, colorectal, liver, pancreatic cancers as well as non-solid cancers such as chronic lymphocytic leukemia. The changes in O-GlcNAcylation are associated with the changes in OGT and OGA expression levels. Hyper-O-GlcNAcylation may be linked to the various hallmarks of cancer, including cancer cell proliferation, survival, invasion, metastasis and metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, cell cycle, transcription factors, and metabolic enzymes in cancer cells.
PL
O-GlcNAcylacja jest odwracalną potranslacyjną modyfikacją białek polegającą na przyłączeniu wiązaniem O-glikozydowym pojedynczych reszt β-N-acetyloglukozaminy (GlcNAc) do seryny lub treoniny. W proces O-GlcNAcylacji włączone są dwa enzymy: O-GlcNAc transferaza (OGT), enzym odpowiedzialny za przyłączanie reszt N-acetyloglukozaminy i β-N-acetyloglukozaminidaza (OGA), która katalizuje reakcję odłączania reszt GlcNAc. Dynamiczna i odwracalna O-GlcNAcylacja odgrywa istoną rolę w regulacji szeregu procesów komórkowych, takich jak przekazywanie sygnału, metabolizm, transkrypcja, translacja, degradacja białek w proteasomach i cykl komórkowy. Ponieważ O-GlcNAcylacja dotyczy reszt seryny lub treoniny, które znajdują się w miejscach rozpoznawanych przez kinazy białkowe, wpływa ona na poziom fosforylacji wielu białek i isnieje ścisła zależność pomiędzy tymi modyfikacjami. Ostanie badania wskazują, że w komórkach nowotworowych dochodzi do znacznego zwiększenia poziomu O-GlcNAcylacji. Hiper-O-GlcNAcylację stwierdzono w różnych typach nowotworów, włączając w to guzy lite np. płuc, prostaty, piersi, jelita grubego, trzustki, wątroby a także białaczki np. przewlekłą białaczkę limfatyczną. Zaburzenia O-GlcNAcylacji związane są ze zmianami w komórkach nowotworowych ekspresji enzymów odpowiedzialnych za ten proces, tj. OGT i OGA. Hiper-O-GlcNAcylacja wpływa na proliferację, przeżycie i metabolizm komórek nowotworowych, jak również zwiększa ich zdolność do inwazji i metastazy. Prezentowana praca stanowi przegląd aktualnych informacji dotyczących roli O-GlcNAcylacji w regulacji szlaków przekazywania sygnałów, cyklu komórkowego, czynników transkrypcyjnych oraz enzymów i innych białek związanych z metabolizmem komórek nowotworowych.
Discipline
Year
Volume
41
Issue
1
Pages
65-91
Physical description
References
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Pomorska 141/143, 90-236 Łódź
  • Oddział Urologii Ogólnej, Onkologicznej i Czynnościowej, II Klinika Urologii, Uniwersytet Medyczny w Łodzi, Wojewódzki Szpital Specjalistyczny im. M. Kopernika w Łodzi, Pabianicka 62, 93-513 Łódź
  • Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta. 2010; 1800: 80-95.
  • Slawson C, Hart GW. O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer. 2011; 11: 678-684.
  • Comer FI, Hart GW. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem. 2000; 275:29179-29182.
  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011; 80: 825-858.
  • Vocadlo DJ. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr Opin Chem Biol. 2012; 16: 488-497.
  • Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet. 2008; 24: 280-288.
  • Butkinaree C, Park K, Hart GW. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta. 2010; 1800: 96-106.
  • Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J Biol Chem. 2004; 279: 38466-38470.
  • Hu P, Shimoji S, Hart GW. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 2010; 584: 2526-2538.
  • 10. Zeidan Q, Hart GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci. 2010; 123: 13-22.
  • Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011; 469: 564-567.
  • Hurtado-Guerrero R, Dorfmueller HC, van Aalten DM. Molecular mechanisms of O-GlcNAcylation. Curr Opin Struct Biol. 2008; 18: 551-557.
  • Iyer SP, Hart GW. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J Biol Chem. 2003; 278: 24608-24616.
  • Wrabl JO, Grishin NV. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J Mol Biol. 2001; 314: 365-374.
  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem. 2001; 276: 9838-9845.
  • Li J, Huang CL, Zhang LW, Lin L, Li ZH, Zhang FW, Wang P. Isoforms of human O-GlcNAcase show distinct catalytic efficiencies. Biochemistry (Mosc). 2010; 75: 1305.
  • Keembiyehetty CN, Krzeslak A, Love DC, Hanover JA. A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J Cell Sci. 2011; 124: 2851-2860.
  • Krześlak A, Forma E, Bernaciak M, Romanowicz H, Bryś M. Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med. 2012; 12: 61-65.
  • Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D i wsp. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics. 2013; 13: 2088-2099.
  • Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C i wsp. GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res. 2010; 70: 6344-63451.
  • Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ. Critical role of O-Linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem. 2012; 287: 11070-11081.
  • Kamigaito T, Okaneya T, Kawakubo M, Shimojo H, Nishizawa O, Nakayama J. Overexpression of O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients. Prostate Cancer Prostatic Dis. 2014; 17: 18-22.
  • Krześlak A, Wojcik-Krowiranda K, Forma E, Bieńkiewicz A, Bryś M. Expression of genes encoding for enzymes associated with O-GlcNAcylation in endometrial carcinomas: clinicopathologic correlations. Ginekol Pol. 2012; 83: 22-26.
  • Ma Z, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. J Biol Chem. 2013; 288: 15121-15130.
  • Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L i wsp. O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med Oncol. 2012; 29: 985-993.
  • Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q, Yu W. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta. 2011; 1812: 514-519.
  • Shi Y, Tomic J, Wen F, Shaha S, Bahlo A, Harrison R i wsp. Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia. 2010; 24: 1588-1598.
  • Rozanski W, Krzeslak A, Forma E, Brys M, Blewniewski M, Wozniak P, Lipinski M. Prediction of bladder cancer based on urinary content of MGEA5 and OGT mRNA level. Clin Lab. 2012; 58: 579-583.
  • Li Z, Yi W. Regulation of cancer metabolism by O-GlcNAcylation. Glycoconj J. 2014; 31: 185-191.
  • Leelahavanichkul K, Amornphimoltham P, Molinolo AA, Basile JR, Koontongkaew S, Gutkind JS. A role for p38 MAPK in head and neck cancer cel growth and tumor-induced angiogenesis and lymphangiogenesis. Mol Oncol. 2014; 8: 105-118.
  • Kneass ZT, Marchase RB. Protein O-GlcNAc modulates motility-associated signaling intermediates in neutrophils. J Biol Chem. 2005; 280: 14579-14585.
  • Goldberg H, Whiteside C, Fantus IG. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am J Physiol Endocrinol Metab. 2011; 301: E713-726.
  • Ding F, Yu L, Wang M, Xu S, Xia Q, Fu G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids. 2013; 45: 339-349.
  • Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci. 2010; 35: 547-555.
  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV i wsp. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature. 2008; 451: 964-969.
  • Fay JR, Steele V, Crowell JA. Energy homeostasis and cancer prevention: the AMP-activated protein kinase. Cancer Prev Res (Phila). 2009; 2: 301-309.
  • Luo B, Parker GJ, Cooksey RC, Soesanto Y, Evans M, Jones D, McClain DA. Chronic hexosamine flux stimulates fatty acid oxidation by activating AMPactivated protein kinase in adipocytes. J Biol Chem. 2007; 282: 7172-71780.
  • Bullen JW1, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D, Hart GW. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).J Biol Chem. 2014; 289: 10592-10606.
  • Ozcan S, Andrali SS, Cantrell JE. Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta. 2010; 1799: 353-64.
  • Fardini Y, Dehennaut V, Lefebvre T, Issad T. O-GlcNAcylation: A New Cancer Hallmark? Front Endocrinol (Lausanne). 2013; 4: 99.
  • Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005; 446: 475-482.
  • Yang WH, Park SY, Nam HW, Kim do H, Kang JG, Kang ES i wsp. NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci U S A. 2008; 105: 17345-17350.
  • Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolizm through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008; 10: 611-618.
  • Ma Z, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. J Biol Chem. 2013; 288: 15121-15130.
  • Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A. YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem. 2003; 278: 14046-14052.
  • Sui G. The regulation of YY1 in tumorigenesis and its targeting potential in cancer therapy. Mol Cell Pharmacol. 2009; 1: 157-176.
  • Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006; 8: 1074-1083.
  • Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010; 16: 528-536.
  • Chou TY, Hart GW, Dang CV. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem. 1995; 270: 18961-18965.
  • Dang CV. MYC on the path to cancer. Cell. 2012; 149: 22-35.
  • Luscher B, Vervoorts J. Regulation of gene transcription by the oncoprotein MYC. Gene. 2012; 494: 145-60.
  • Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007; 120: 2479-2487.
  • Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005; 16: 183-189.
  • Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF i wsp.O-GlcNAc regulates FoxO acti vation in response to glucose. J Biol Chem. 2008; 283: 16283-16292.
  • Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett. 2008; 582: 829-834.
  • Koo CY, Muir KW, Lam EW. FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta. 2012; 1819: 28-37.
  • Halasi M, Gartel AL. FOX(M1) news--it is cancer. Mol Cancer Ther. 2013; 12: 245-254.
  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S i wsp. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010; 29: 2831-2842.
  • Yang YR, Song M, Lee H, Jeon Y, Choi EJ, Jang HJ i wsp. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell. 2012; 11: 439-448.
  • Olivier-Van Stichelen S, Drougat L, Dehennaut V, El Yazidi-Belkoura I, Guinez C, Mir AM i wsp. Serum-stimulated cell cycle entry promotes ncOGT synthesis required for cyclin D expression. Oncogenesis. 2012; 1: e36.
  • Zhang S, Roche K, Nasheuer HP, Lowndes NF. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem. 2011; 286: 37483-37495
  • Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC i wsp. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition.
  • Biochim Biophys Acta. 2012; 1820: 1839-1848.
  • Li J, Deng M, Wei Q, Liu T, Tong X, Ye X. Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle. J Biol Chem. 2011; 286: 39776-39785.
  • Alvarez-Fernandez M, Medema RH, Lindqvist A. Transcriptional regulation underlying recovery from a DNA damage-induced arrest. Transcription. 2010; 1: 32-35.
  • Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell. 2008; 19: 4130-4140.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324: 1029-1033.
  • Joźwiak P, Forma E, Bryś M, Krześlak A. O-GlcNAcylation and Metabolic Reprograming in Cancer. Front Endocrinol (Lausanne). 2014; 5: 145.
  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7: 11-20.
  • Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab. 2013; 24: 301-309.
  • Ma J, Hart GW. Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev Proteomics. 2013; 10: 365-380.
  • 71. Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC i wsp. Direct ingel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc. 2008; 130: 11576-11577.
  • Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008; 13: 472-482.
  • Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012; 21: 297-308.
  • Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd i wsp. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012; 337: 975-980.
  • Ma Z, Vosseller K. O-GlcNAc in cancer biology. Amino Acids. 2013; 45: 719-733.
  • David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010; 463: 364-368.
  • Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA i wsp. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997; 94: 6658-6663.
  • Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M i wsp. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000; 275: 21797-21800.
  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T i wsp. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009; 458: 762-765.
  • Johnson RF, Witzel II, Perkins ND. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res. 2011; 71: 5588-5597.
  • Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R i wsp. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes. 2011; 60: 1399-1413.
  • Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci U S A. 2009; 106: 21660-21665.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646-674.
  • Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009; 19: 329-337.
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139: 871-890.
  • Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C i wsp. GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res. 2010; 70: 6344-6351.
  • Park SY, Kim HS, Kim NH, Ji S, Cha SY, Kang JG i wsp. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J. 2010; 29: 3787-3796.
Document Type
paper
Publication order reference
YADDA identifier
bwmeta1.element.psjd-8331abee-9477-44f3-bd5a-3fe45fd14448
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.