Preferences help
enabled [disable] Abstract
Number of results
2019 | 126 | 101-117
Article title

The Importance of Nature (Length) of Proboscis in Hesperiidae Butterflies

Title variants
Languages of publication
Modifications in the parts around mouth in butterflies appears to be the most significant feature for their life. Most of the butterflies use to feed on floral nectar. Butterflies, therefore may have a role as efficient pollinators for respective host plants. Development of long proboscis as modified mouth parts in butterflies is to be regarded as example of co-evolutionary line in animal kingdom. The Hesperiidae butterflies of Mayureshwar Wildlife sanctuary shown variations in their length of proboscis. The hesperiidae butterflies with longer proboscis visit plant species having flowers with long or deep-tube. Hesperiidae butterfly proboscis help to take up nectar food from long or deep tubed as well as short tubed flowers. The hesperiidae butterflies with extremely long proboscis in present attempt were observed to obtain the nectar from their preferred host plants. The Calathea species are reported as nectar host plants for the Hesperiidae butterflies of Mayureshwar Wildlife sanctuary. The species of skipper butterflies (family: Hesperiidae) with long proboscis could potentially utilize short flowers in addition to long flowers. It would be expected that, the number of flowering species visited by skipper butterflies (Family: Hesperiidae) would be greater than that of species skipper butterflies (Family: Hesperiidae) with short proboscis. The data in present attempt support the hypothesis. The skipper butterflies (family: Hesperiidae) with extremely long-proboscis, generally did not visit flowers with short nectar spurs. Both Lantana camera (L) (Family: Verbenaceae) and Stachytarpheta frantzii (L) (Family: Verbenaceae) attract many different flower-visiting insects. This is because, the flowers of Lantana camera (L) (Family: Verbenaceae) and Stachytarpheta frantzii (L) (Family: Verbenaceae) are easily accessible. These flowers are continuously exploited by a great variety of butterfly species possessing rather short proboscis. The skipper butterflies (Family: Hesperiidae) with long-proboscis are crowded out to deep-tubed flowers.
Physical description
  • Agricultural Development Trust’s Shardabai Pawar Mahila Mahavidyalaya, Shardanagar, Malegaon, Tal. Baramati Dist. Pune - 413115, India
  • [1] Agosta SJ, Janzen DH (2005) Body size distributions of large Costa Rican dry forest moths and the underlying relationship between plant and pollinator morphology. Oikos 108: 183–193. doi:10. 1111/j.0030-1299.2005.13504.x
  • [2] Alexandersson R, Johnson SD (2002) Pollinator–mediated selection on flower–tube length in a hawkmoth–pollinated Gladiolus (Iridaceae). Proc R Soc Lond B 269: 631–636. doi:10.1098/rspb. 2001.1928
  • [3] Bauder JAS, Lieskonig NR, Krenn HW (2011) The extremely longtongued Neotropical butterfly Eurybia lycisca (Riodinidae): proboscis morphology and flower handling. Arthropod Struct Dev 40: 122–127. doi:10.1016/j.asd.2010.11.002
  • [4] Bauder JAS, Morawetz L, Warren AD, Krenn HW (2015) Functional constraints on the evolution of long butterfly proboscides: lessons from Neotropical skippers (Lepidoptera: Hesperiidae). J Evol Biol 28: 678–687. doi:10.1111/jeb.12601
  • [5] Borrell BJ (2005) Long tongues and loose niches: evolution of euglossine bees and their nectar flowers. Biotropica 37: 664–669. doi:10.1111/j.1744-7429.2005.00084.x
  • [6] Corbet SA (2000) Butterfly nectaring flowers: butterfly morphology and flower form. Entomol Exp Appl 96: 289–298. doi:10.1046/j. 1570-7458.2000.00708.x
  • [7] Courtney SP, Hill CJ, Westerman A (1982) Pollen carried for long periods by butterflies. Oikos 38: 260–263. doi:10.2307/3544030
  • [8] Darwin C (1862). On the various contrivances by which British and foreign orchids are fertilised by insects and on the good effects of intercrossing. John Murray, London
  • [9] DeVries PJ (1997). The butterflies of Costa Rica and their natural history - Volume II: Riodinidae. Princeton University Press, Chichester.
  • [10] Garrison JSE, Gass CL (1999) Response of a traplining hummingbird to changes in nectar availability. Behav Ecol 10: 714–725. doi:10.1093/beheco/10.6.714
  • [11] Gilbert LE (1972) Pollen feeding and reproductive biology of Heliconiusbutterflies. PNAS 69: 1403–1407. doi:10.1073/pnas.69.6.1403
  • [12] Gilbert LE (1975) Ecological consequences of a coevolved mutualism between butterflies and plants. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 210–240
  • [13] Grant V, Grant KA (1965) Flower pollination in the Phloxfamily. Columbia University Press, New York.
  • [14] Grant V, Grant KA (1983) Hawk-moth pollination of Mirabilis longiflora (Nyctaginaceae). PNAS 80: 1298–1299. doi:10.1073/ pnas.80.5.1298
  • [15] Harder LD (1985) Morphology as a predictor of flower choice by bumble bees. Ecology 66:198–210. doi:10.2307/1941320 Hespenheide HA (1973) Ecological inferences from morphological data. Annu Rev Ecol Evol Syst 4: 213–229. doi:10.1146/
  • [16] Horvitz CC, Turnbull C, Harvey DJ (1987) Biology of immature Eurybia elvina (Lepidoptera: Riodinidae), a myrmecophilous metalmark butterfly. Entomol Soc Am 80: 513–519
  • [17] Inouye DW (1980) The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 45: 197–201. doi:10.1007/BF00346460
  • [18] Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171: 203–205. doi:10.1126/science.171.3967.203
  • [19] Janzen DH, Hallwachs W (2009) Dynamic database for an inventory of the macrocaterpillar fauna, and its food plants and parasitoids, of area de conservacion guanacaste (ACG), northwestern Costa Rica (nn-SRNP-nnnnn voucher codes). URL
  • [20] Johnson SD (1997) Pollination ecotypes of Satyrium hallackii (Orchidaceae) in South Africa. Bot J Linn Soc 123: 225–235. doi:10.1006/bojl.1996.0082
  • [21] Johnson SD, Anderson B (2010) Coevolution between food-rewarding flowers and their pollinators. Evol: Educ Outreach 3: 32–39. doi:10.1007/s12052-009-0192-6
  • [22] Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconiscomplex (Orchidaceae). Evolution 51: 45–53. doi:10.2307/2410959
  • [23] Kennedy H (2000) Diversification in pollination mechanisms in the Marantaceae. In: Wilson K, Morrison D (eds) Monocots: systematics and evolution. CSIRO Publishing, Collingwood, pp 335–344
  • [24] Krenn HW (2010) Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annu Rev Entomol 55: 307–327. doi:10.1146/annurev-ento-112408-085338
  • [25] Krenn HW, Wiemers M, Maurer L, Pemmer V, Huber W, Weissenhofer A (2010) Butterflies of the Golfo Dulce region, Costa Rica. Verein zur Fo¨rderung der Tropenstation La Gamba, Vienna.
  • [26] Levin DA, Berube DE (1972). Phloxand Colias: the efficiency of a pollination system. Evolution 26: 242–250. doi:10.2307/2407034
  • [27] Muchhala N, Thomson JD (2009) Going to great lengths: selection for long corolla tubes in an extremely specialized bat - flower mutualism. Proc R Soc B 276: 2147–2152. doi:10.1098/rspb.2009.0102
  • [28] Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334: 147–149. doi:10.1038/334147a0
  • [29] Nilsson LA (1998) Deep flower for long tongues. Tree 13: 259–260.doi: 10.1016/ S0169-5347(98)01452-9
  • [30] Nilsson LA, Jonsson L, Rason L, Randrianjohany E (1985) Monophily and pollination mechanisms inAngraecum arachnitesSchltr. (Orchidaceae) in a guild of long-tongued hawkmoths (Sphingidae) in Madagascar. Biol J Linn Soc 26: 1–19. doi:10.1111/j.1095-8312.1985.tb01549.x
  • [31] Pauw A, Stofberg J, Waterman RJ (2009) Flies and flowers in Darwin’s race. Evolution 63: 268–279. doi:10.1111/j.1558-5646. 2008.00547.x0014-3820
  • [32] Pischtschan E, Claßen-Bockhoff R (2008) Setting-up tension in the style of Marantaceae. Plant Biol 10: 441–450. doi:10.1111/j. 1438-8677.2008.00051.x
  • [33] Porter K, Steel CA, Thomas JA (1992) Butterflies and communities. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 46–72
  • [34] Ranta E, Lundberg H (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35: 298–302. doi:10.2307/3544643
  • [35] Rodrı´guez-Girone´s MA, Llandres AL (2008) Resource competition triggers the co-evolution of long tongues and deep corolla tubes. PLoS ONE 3: 1–8. doi:10.1371/journal.pone.0002992
  • [36] Rodrı´guez-Girone´s MA, Santamarı´a L (2007) Resource competition, character displacement, and the evolution of deep corolla tubes. Am Nat 170: 455–464. doi:10.1086/520121.
  • [37] Ruppel A (2013) Morphologisch-systematische Untersuchungen der Blüten der Marantaceae im Piedras Blancas NP, Costa Rica. Diploma thesis, Justus-Liebig Universität Gießen
  • [38] Schemske DW (1981) Floral convergence and pollinator sharing in two bee-pollinated tropical herbs. Ecology 62: 946–954. doi:10. 2307/1936993
  • [39] Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225: 519–521. doi:10.1126/science.225.4661.519
  • [40] Schoener TW (1974) Resource partitioning in ecological communities. Science 185: 27–39. doi:10.1126/science.185.4145.27
  • [41] Shreeve TG (1992) Adult behaviour. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 22–45
  • [42] Stefanescu C, Traveset A (2009) Factors influencing the degree of generalization in flower use by Mediterranean butterflies. Oikos 118:1109–1117. doi:10.1111/j.1600-0706.2009.17274.x
  • [43] Tiple AD, Kuhrad AM, Dennis RLH (2009) Adult butterfly feeding– nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J Nat Hist 43: 855–884. doi:10.1080/00222930802610568
  • [44] Tudor O, Dennis RLH, Greatorex-Davies JN, Sparks TH (2004) Flower preferences of woodland butterflies in the UK: nectaring specialists are species of conservation concern. Biol Conserv 119: 397–403. doi:10.1016/j.biocon.2004.01.002
  • [45] Warren AD, Ogawa JR, Brower AVZ (2009) Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Sys Entomol 34: 467–523. doi:10.1111/j.1365-3113.2008.00463.x
  • [46] Wasserthal LT (1997) The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. Sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot Acta 110: 343–359. doi:10.1111/j.1438-8677.1997.tb00650.x
  • [47] Wasserthal LT (1998) Deep flowers for long tongues. Tree 13: 459–460. doi:10.1016/S0169-5347(98)01481-5
  • [48] Weber A, Huber W, Weissenhofer N, Zamora N, Zimmermann G (2001) An introductory field guide to the flowering plants of the Golfo Dulce rain forests, Costa Rica. Corcovado National Park and Piedras Blancas National Park („Regenwald der O sterreicher”). Stapfia 78, Linz
  • [49] Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447: 706–710. doi:10.1038/nature05857
  • [50] Wiklund C (1981) On the pollination efficiency of butterflies: a reply to Courtney et al. Oikos 38:263. doi:10.2307/3544031
  • [51] Wiklund C, Eriksson T, Lundberg H (1979) The wood white butterfly Leptidea sinapisand its nectar plants: a case of mutualism or parasitism? Oikos 33: 358–362. doi:10.2307/3544323
  • [52] Woodson RE Jr, Schery RW, Moldenke HN (1973) Flora of Panama. Part IX. family 168. Verbenaceae. Ann Mo Bot Gard 60: 41–148. doi:10.2307/2394768
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.