Preferences help
enabled [disable] Abstract
Number of results
2017 | 67 | 2 | 365-389
Article title

Effect of SHIFTZCC codes for Optical CDMA system

Title variants
Languages of publication
In this paper, we propose a novel SAC-OCDMA code called Shift Zero Cross Correlation (SHIFTZCC) code with zero cross correlation property to minimize the Multiple Access Interface (MAI), to be more scalable and secure compared to the other existing SAC-OCDMA codes. This SHIFTZCC code is constructed using address segment and data segment. In this work, the proposed SHIFTZCC code is implemented in an optical network using the Opti-System software for the spectral amplitude coded optical code division multiple access (SAC-OCDMA) scheme. The chief advantage of the proposed SHIFTZCC code is the zero cross correlation property, which reduces both the MAI and other noises improving the system performance. The proposed SHIFTZCC code provides flexibility in selecting the code parameters, supports a large number of users with higher data rate and longer fiber length. Simulation results prove that the optical code division multiple access system based on the proposed SHIFTZCC code supports maximum number of simultaneous users with higher transmission rate, lower bit error rates (BER) and longer travelling distance without any signal quality degradation, as compared to the former existing SAC-OCDMA codes.
Physical description
  • [1] Thanaa Hussein Abd, S. A. Aljunid, Hilal Adnan Fadhil, M. N. Junita, and N. M. Saad, Modelling and simulation of a 1.6 Tb/s optical system based on multi-diagonal code and optical code-division multiple access. Ukr. J. Phys. Opt, 13(2) (2012) 54-66.
  • [2] Zouine Y, Dayoub I, Haxha S, Rouvaen J. M., Analyses of constraints on high speed optical code division multiplexing access (OCDMA) link parameters due to fiber optic chromatic dispersion. Journal of Optical Communication, 281 (2008) 1030-1036.
  • [3] T. H. Abd, S .A. Alijunaid, H. A. Fadhil, R. A. Ahmad, N. M. Saad. Development of a new code family based on SAC-OCDMA system with large cardinality for OCDMA networks. Journal of optical fiber technology, 17 (2011) 273-280.
  • [4] Mohammed Noshad, Kambiz Jamshidi. Code family for modified spectral amplitude coding OCDMA system and performance analysis. Journal of Optical Communication Networks, 2 (2010) 344-354.
  • [5] Hasson F. N., Aljunid S. A., Samad M. D. A and Abdullah M. K., Spectral amplitude coding OCDMA using AND subtraction technique. Application of Optics, 47 (2008) 1263-1268.
  • [6] Wei Z. H., Shalaby M., and Shiraz H. G., New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems. IEEE Photonic Technology Letters, 13 (2001) 890-892.
  • [7] Wei Z, Shalaby H. M. H, and Ghafouri Shiraz H., Modified quadratic congruence codes for fiber Bragg-grating based spectral-amplitude coding optical CDMA system. Journal of Light wave Technology, 19 (2001) 1274-1281.
  • [8] Salehi J. A., Code division multiple access technique in optical fiber networks. Part II: System performance analysis. IEEE Transaction on Communication, 37 (1989) 834-842.
  • [9] Lin J. Y., Jhou J. S., Liu C. Y., Wen J. H., Performance analysis of modified Prime hop codes for OCDMA systems with multi user detectors. Journal of Optical Fiber Technology, 13 (2007) 108-116.
  • [10] Ahmad Anas S. B., Abdullah M. K., Mokhtar M., Aljunidc S. A. and Walker S. D., Optical domain service differentiation using spectral-amplitude-coding. Journal of Optical Fiber Technology, 15 (2009) 26-32.
  • [11] Hillal Adnan Fadhil, Aljunid S. A., and Ahmed R. B., Effect of random diagonal code link of an OCDMA scheme for high-speed access networks. Journal of Optical Fiber Technology, 15 (2009) 237-241.
  • [12] Aljunaid S. A., Ismail M., and Ramil A. R., A new family of optical code sequence for spectral-amplitude-coding optical CDMA systems. IEEE Photonic Technology Letters, 16 (2004) 2383-2385.
  • [13] M. S. Anwar, S. A. Alijunaid, N. M. Saad, S. M. Hamzah. New design of spectral amplitude coding in OCDMA with zero cross correlation. Journal of optical communication, 282 (2009) 2659-2664.
  • [14] Tseng S. P., Modified multiphotodiode balanced detection technique for improving SAC-OCDMA networks. Journal of Optics Communications, 344 (2015) 38-42.
  • [15] Kakaee M. H., Seyedzadeh, S., Fadhil, H. A., Anas, S. B. A.,Mokhtar, M., Development of Multi-Service (MS) for SAC-OCDMA systems. Optics & Laser Technology, 60 (2014) 49-55.
  • [16] Fadhil H. A., Aljunid S. A., Ahmed, H. Y., Alkhafaji H. M. R., Variable cross correlation code construction for spectral amplitude coding optical CDMA networks. Journal of Optik, 123 (2012) 956-963.
  • [17] Tseng S. P., Fast frequency hopping codes applied to SAC optical CDMA network. Journal of Optical Fiber Technology, 23 (2015) 61-65.
  • [18] Panda S., Bhanja U., Performance analysis of a novel coding technique for SAC-OCDMA. Journal of Emerging Trend in Computing and Information Sciences, 6(6) (2015) 299-307.
  • [19] Jyoti V., Kaler R. S., Design and performance analysis of various one dimensional codes using different data formats for OCDMA system. Journal of Optik, 122 (2011) 843-850.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.