Preferences help
enabled [disable] Abstract
Number of results
2018 | 23 | 33 - 44
Article title


Title variants
Languages of publication
The article presents the effectiveness of orthophosphate sorption from aqueous solutions depending on the deacetylation degree of chitosan flakes. The first stage of the research was to determine the pH value at which the sorption process was the most effective (from the pH range 2–11). In the second stage, research was carried out to determine the maximum sorption capacities of chitosan with deacetylation degrees of 75%, 85% and 90% in relation to PO43-. The highest effectiveness of orthophosphate removal on chitosan, regardless of its deacetylation degree, was obtained at pH 4. At pH 2 and 3, the chitosan flakes dissolved. This study showed that the sorption effectiveness of phosphorus compounds depends on the deacetylation degree of chitosan. Along with the increase in deacetylation degree, the sorption capacity of chitosan also increases in relation to orthophosphates. It is related to the higher number of amino groups in the structure of chitosan, which are responsible for the sorption of pollutants in the form of anions. The maximum sorption capacity of chitosan-DD = 75% in relation to biogen was 5.13 mg/g, chitosan-DD = 85% was 5.65 mg/g, and chitosan-DD = 90% was 5.91 mg/g. After 60 minutes, the desorption process had begun and was most likely caused by an increase in the pH of the solution. Due to chitosan's ability to neutralise the sample and the associated risk of desorption, the time of sorbent contact with sewage cannot be longer than 60 minutes.
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Department of Biotechnology in Environmental Protection, University of Warmia and Mazury in Olsztyn
  • [1] Mezenner N.Y., Bensmaili A.; (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide– eggshell waste. Chem Eng J 147, 87–96. DOI:10.1016/ j.cej.2008.06.024
  • [2] Penn C.J., Warren J.G.; (2009) Investigating phosphorus sorption onto kaolinite using isothermal titration calorimetry. Soil Sci Soc Am J 73, 560–568. DOI:10.2136/sssaj 2008.0198
  • [3] Wang C.Y., Zhai J.P., Nie R., Huang L.; (2005) Experimental study on phosphorus removal by activated sludge process in treating wastewater of low phosphorus concentration, Environmental Protection Science 31, 4–6
  • [4] Almeelbi T., Bezbaruah A.; (2012) Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 14(7), 900. DOI:10.1007/s11051-012-0900-y
  • [5] Cleary J., Slater C., Diamond D.; (2010) Analysis of phosphate in wastewater using an autonomous microfluidics-based analyser. International Journal of Environmental Science and Engineering, 2(3), 145-148
  • [6] Saad R., Belkacemi K., Hamoudi S.; (2007) Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: Effects of experimental conditions. J Colloid Interface Sci 311, 375-38; DOI: 10.1016/j.jcis.2007.03.025
  • [7] Pawełczyk A.; (2004) Agriculture utylization of nitroesters and isoocytyl nitrate. New Agrochemicals and their Safe Use for Health and Enviromental, Vol.5, 546-567
  • [8] Kumar M., Badruzzaman M., Adham S., Oppenheimer J.; (2007) Beneficial phosphate recovery from reverse osmosis (RO) concentrate of an integrated membrane system using polymeric ligand exchanger (PLE). Water research 41(10), 2211-2219; DOI: 10.1016/j.watres.2007.01.042
  • [9] Loganathan P., Vigneswaran S., Kandasamy J., Bolan N. S.; (2014) Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology 44(8), 847-907; DOI: 10.1080/10643389.2012.741311
  • [10] Xu X., Gao B., Yue Q., Zhong Q.; (2011) Sorption of phosphate onto giant reed based adsorbent: FTIR, Raman spectrum analysis and dynamic sorption/desorption properties in filter bed. Bioresource technology 102(9), 5278-5282; DOI: 10.1016/j.biortech.2010.10.130
  • [11] de Sousa A. F., Braga T. P., Gomes E. C. C., Valentini A., Longhinotti E.; (2012) Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chemical Engineering Journal 210, 143-149; DOI: 10.1016/j.cej.2012.08.080
  • [12] Je J., Kim S.; (2006) Antimicrobial action of novel chitin derivative. Biochimica et Biophysica Acta 1760, 104 – 109; DOI: 10.1016/j.bbagen.2005.09.012
  • [13] Rzodkiewicz B., Piotrowska A.; (1999) Możliwości i ograniczenia wykorzystania ubocznych produktów przemysłu. Magazyn Przemysłu Rybnego, 10, 33-35
  • [14] Crini G., Badot P. M.; (2008) Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature, Prog. Polym. Sci. 33, 399–447; DOI: 10.1016/j.progpolymsci.2007.11.001
  • [15] Ahmad A., Rafatullah M., Sulaiman O., Ibrahim M. H., Hashim R.; (2009) Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. Journal of hazardous materials 170(1), 357-365; DOI: 10.1016/j.jhazmat.2009.04.087
  • [16] Antelo J., Avena M., Fiol S., López R., Arce F.; (2005) Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. Journal of Colloid and Interface Science 285(2), 476-486; DOI: 10.1016/j.jcis.2004.12.032
  • [17] Das J., Patra B. S., Baliarsingh N., Parida K. M. ;(2006). Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science 32(3), 252-260; DOI:10.1016/j.clay.2006.02.005
  • [18] Su Y., Cui H., Li Q., Gao S., Shang J. K.; (2013) Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water research 47(14), 5018-5026; DOI: 10.1016/j.watres.2013.05.044
  • [19] Iqbal J., Wattoo F. H., Wattoo M. H. S., Malik R., Tirmizi S. A., Imran M., Ghangro A. B.; (2011) Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arabian Journal of Chemistry 4(4), 389-395.; DOI: 10.1016/j.arabjc.2010.07.007
  • [20] Jóźwiak T., Filipkowska U., Szymczyk P., Kuczajowska-Zadrożna M., Mielcarek A.; (2017) The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3. International journal of biological macromolecules 104, 1280-1293; DOI: 10.1016/j.ijbiomac.2017.07.011
  • [21] Saha T. K., Bhoumik N. C., Karmaker S., Ahmed M. G., Ichikawa H., Fukumori Y.; (2011) Adsorption characteristics of reactive black 5 from aqueous solution onto chitosan. CLEAN–Soil, Air, Water 39(10), 984-993; DOI: 10.1002/clen.201000315
  • [22] Das J., Patra B. S., Baliarsingh N., Parida K. M.; (2006) Adsorption of phosphate by layered double hydroxides in aqueous solutions. Applied Clay Science 32(3), 252-260; DOI:10.1016/j.clay.2006.02.005
  • [23] Dai J., Yang H., Yan H., Shangguan Y., Zheng Q., Cheng R.; (2011) Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper (II). Chemical Engineering Journal 166(3), 970-977; DOI: 10.1016/j.cej.2010.11.085
  • [24] Alvarez P.M., Beltran F.J., Gomez-Serrano V., Jaramillo J., Rodriguez E.M.; (2004) Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research, 38 (8), 2155-2165; DOI: 10.1016/j.watres.2004.01.030
  • [25] Jóźwiak T., Filipkowska U., Szymczyk P., Kuczajowska-Zadrożna M., Mielcarek A., Zyśk M.; (2016) The influence of chitosan deacetylation degree on reactive black 5 sorption efficiency from aqueous solutions. Progress on Chemistry and Application of Chitin and its Derivatives 21, 83-92.
  • [26] Piccin J. S., Vieira M. L. G., Gonçalves J. O., Dotto G. L., Pinto L. A. D. A.; (2009) Adsorption of FD&C Red No. 40 by chitosan: Isotherms analysis. Journal of Food Engineering 95(1), 16-20; DOI: 10.1016/j.jfoodeng.2009.03.017
  • [27] Gonçalves J. O., Duarte D. A., Dotto G. L., Pinto L. A. A.; (2014) Use of chitosan with different deacetylation degrees for the adsorption of food dyes in a binary system. CLEAN–Soil, Air, Water 42(6), 767-774; DOI: 10.1002/clen.201200665
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.