Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 40 | 1 | 99-132

Article title

Struktura i funkcje białka βKlotho

Content

Title variants

EN
The structure and functions of βKlotho protein

Languages of publication

PL

Abstracts

PL
Gen βKlotho (KLB) odkryty został w roku 2000, jako homolog genu αKlotho. Gen KLB koduje monotopowe białko przezbłonowe, ulegające ekspresji głównie w wątrobie i białej tkance tłuszczowej. W odróżnieniu od myszy αKL–/–, myszy KLB–/– rozwijają się prawidłowo, jednakże wykazują one znaczny wzrost biosyntezy kwasów żółciowych oraz oporność na tworzenie się kamieni żółciowych. Podobny fenotyp obserwuje się również u myszy z wyłączonym genem FGFR4 lub FGF15. Dane te były podstawą sugestii, że białko βKlotho oddziałuje z FGFR4 i pełni rolę koreceptora dla FGF15. Dalsze analizy pokazały, że βKlotho tworzy również kompleks z receptorem FGFR1c, funkcjonując jako koreceptor dla czynnika FGF21. Wykazano, że poprzez działanie na szlaku FGF-FGFR, białko βKlotho zaangażowane jest w regulację licznych procesów komórkowych. Funkcjonując jako koreceptor dla czynnika FGF19 (ortolog FGF15 u człowieka), KLB wpływa m.in. na metabolizm kwasów żółciowych oraz homeostazę energetyczną. Natomiast jako koreceptor dla FGF21, białko KLB wpływa na promocję lipolizy w białek tkance tłuszczowej oraz ketogenezy w wątrobie.
EN
The βKlotho gene was identified on 2000, based on sequence similarity with the αKlotho gene. The KLB gene encoded single-pass transmembrane protein, which is expressed predominantly in liver and white adipose tissue. KLB–/–mice, unlike αKL–/– mice, grow and develop quite normally, but they exhibit increased bile acid synthesis and resistance to gallstone formation. Similar phenotype was also observed in mice lacking FGFR4 or FGF15. These observations led to hypothesis, that βKlotho interacts with FGFR4 and functions as a coreceptor for FGF15. Subsequent studies have shown, that βKlotho form complex with FGFR1c and function as coreceptor for FGF21. It was found, that via FGF-FGFR signalling pathway βKlotho can regulate many cellular processes. Functions as coreceptor for FGF19 (the orthologous protein in humans), KLB can regulate inter alia bile acids metabolism and energy homeostasis. Function as coreceptor for FGF21 protein can mediate promotion of lypolisis in white adipose tissue and ketogenesis in liver.

Keywords

Discipline

Year

Volume

40

Issue

1

Pages

99-132

Physical description

Contributors

  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
author
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

References

  • Kuro-o M. Klotho and βKlotho. Adv Exp Med Biol. 2012; 728: 25-40.
  • Kuro-o M. Klotho and aging process. Korean J Intern Med. 2011; 26: 113-122.
  • Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A i wsp. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat. 2012; 133: 649-57.
  • Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H i wsp. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008; 27(56): 7094-70105.
  • Wang L, Wang X, Wang X, Jie P, Lu H, Zhang S i wsp. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011; 1: 111-119.
  • Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C i wsp. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res. 2011; 17: 4254-4266.
  • Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H i wsp. Klotho predicts good clinical outcome in patients with limited-disease small cell lung cancer who received surgery. Lung Cancer. 2011; 74: 332-337.
  • Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H i wsp. Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer. 2011; 72: 355-359.
  • Pan J, Zhong J, Gan LH, Chen SJ, Jin HC, Wang X i wsp. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol. 2011; 32: 729-735.
  • Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B i wsp. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010; 9:109.
  • http://www.ncbi.nlm.nih.gov
  • http://www.nextprot.org
  • http://www.ensembl.org
  • Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T i wsp. Molecular cloning and expression analyses of mouse βklotho, which encodes a novel Klotho family protein. Mech Dev. 2000; 98: 115-119.
  • Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y. Impaired negative feedback suppression of bile acid synthesis in mice lacking βKlotho. J Clin Investig. 2005; 115: 2202-2208.
  • Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R i wsp. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA. 2007; 104: 7432-7437.
  • Arrese M, Miguel JF, Ananthanarayanan M. βKlotho: a new kid on the bile acid biosynthesis block. Hepatology 2006; 43: 191-193.
  • http://blast.ncbi.nlm.nih.gov
  • http://www.uniprot.org
  • Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010; 342: 1-11.
  • Micanovic R, Raches DW, Dunbar JD, Driver DA, Bina HA, Dickinson CD i wsp. Different roles of N- and C-termini in the functional activity of FGF21. J Cellular Physiol. 2009; 219: 227-234
  • Wu X, Lemon B, Li X, Gupte J, Weiszmann J, Stevens J i wsp. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J Biol Chem. 2008; 283: 33304-33309.
  • Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 2012; 7: e33870.
  • Tomiyama K, Maeda R, Urakawa I, Yamazaki Y, Tanaka T, Ito S i wsp. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc Natl Acad Sci U S A. 2010; 107: 1666-1671.
  • Adams AC, Cheng CC, Coscun T, Kharitonenkov A. FGF21 requires βKlotho to act in vivo. PLoS One 2012; 7: e49977.
  • Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV i wsp. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007; 282: 26687-26695.
  • Lin BC, Wang M, Blackmore C, Desnoyers LR. Liver-specific activities of FGF19 require Klotho beta. J Biol Chem. 2007; 282: 27277-27284.
  • Ge H, Baribault H, Vonderfecht S, Lemon B, Weiszmann J, Gardener J i wsp. Characterization of a FGF19 variant with altered receptor specificity revealed a central role for FGFR1c in the regulation of glucose metabolism. PLoS One 2012; 7: e33603.
  • Adams AC, Coscun T, Rovira ARI, Schneider MA, Raches DW i wsp. Fundamentals of FGF19 and FGF21 action in vitro and in vivo. PLoS One 2012; 7: e38438.
  • Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N i wsp. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci U S A. 2009; 106: 14379-14384.
  • Cicione C, Degirolamo C, Moschetta A. Emerging role of fibroblast growth factors FGF15/19 and 21 as metabolic integrators in the liver. Hepatology. 2012; 56: 2404-2411.
  • Moschetta A, Kliewer SA. Weaving betaKlotho into bile acid metabolism. J Clin Invest. 2005; 115: 2075-2077.
  • Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012; 26: 312-324.
  • Luo Y, Yang C, Lu W, Xie R, Jin C, Huang P i wsp. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation. J Biol Chem. 2010; 285: 30069 30078.
  • Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ, Jansen PL i wsp. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology. 2012; 55: 575-583.
  • Long YC, Kharitonenkov A. Hormone-like fibroblast growth factors and metabolic regulation. Biochim Biophys Acta. 2011; 1812: 791-795.
  • Wu AL, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French D.M i wsp. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4 dependent and independent pathways. PLoS One. 2011; 18: e17868.
  • Wong BS, Camilleri M, Carlson PJ, Guicciardi ME, Burton D, McKinzie S i wsp. A Klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology. 2011, 140: 1934-1942.
  • Li H, Zhang J, Jia W. Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med. 2013; 7: 25-30.
  • Domouzoglou EM, Maratos-Flier E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr. 2011; 93: 901S-905S.
  • Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS i wsp. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011, 152: 2996-3004.
  • Yan H, Xia M, Chang X, Xu Q, Bian H, Zeng M i wsp. Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study. PLoS One. 2011; 6: e24895.
  • Murata Y, Konishi M, Itoh N. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology. J Nutr Metab. 2011; 2011: 981315.
  • Iglesias P, Selgas R, Romero S, Diez JJ. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblast growth factor 21. Eur J Endocrinol. 2012; 167: 301-309.
  • Cuevas-Ramos D, Almeda-Valdes P, Aguilar-Salinas CA, Cuevas-Ramos G, Cuevas-Sosa AA, Gomez-Perez FJ. The role of fibroblast growth factor 21 (FGF21) on energy balance, glucose and lipid metabolism. Curr Diabetes Rev. 2009; 5: 216-220.
  • Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G i wsp. Fibroblast growth factor 21 reverses hepatic steatosis, increase energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009; 58: 250-259.
  • Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1 alpha pathway. Proc Natl Acad Sci U S A. 2010; 107: 12553 12558.
  • Seo JA, Kim NH. Fibroblast growth factor 21: A novel metabolic regulator. Diabetes Metab J. 2012; 36: 26-28.

Document Type

paper

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-81a2d87a-8501-4442-a8bf-ae8df3f37076
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.