PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 8 | 1 | 16-24
Article title

Chemokiny i ich receptory w doświadczalnym autoimmunizacyjnym zapaleniu OUN

Content
Title variants
EN
Chemokines and their receptors in experimental autoimmune inflammation in the CNS
Languages of publication
EN PL
Abstracts
EN
Chemokines are a family of small alkaline proteins with molecular weight of 6 to 14 kDa. Depending on physiological activities they can be divided into two groups, homeostatic (constitutive) and inflammatory. Homeoprzemieszczastatic chemokines (e.g., CCL19, CCL21, CCL25, CCL27, CXCL12 and CXCL13) are usually constitutively expressed in the specific microenvironments of lymphoid organs and peripheral tissues. In contrast, inflammatory chemokines (e.g., CCL1, CCL2, CCL11, CCL17 and CCL22) are involved in development of inflammation. Their expression is induced by another inflammatory cytokines such as IL-1β or TNF. Chemokines act on various types of target cells through rhodopsin like G protein-coupled receptors. The main function of chemokines is induction of directed chemotaxis of different types of target cells. Moreover, they regulate inflammatory process and differentiation of immunological cells. Physiologically, chemokines constitutively expressed in the central nervous system (CNS) can initiate multipotential progenitor cells and neurons migration during the development of the brain as well as they can act as a trophic factors for neurons. The close correlation between the expression of chemokines and the influx of inflammatory cells to the CNS during an animal model of multiple sclerosis (MS) – experimental autoimmune encephalomyelitis (EAE) was observed. The mRNA expression of chemokines CCL2, CCL3, CCL4, CCL5, CCL7 and CXCL10 as well as chemokine receptors CCR2, CCR5, CCR8, CXCR2, CXCR3, CXCR4 andCX3CR1 in the CNS of animals with EAE was increased. These data suggest that chemokines and their receptors may be involved in the pathogenesis of autoimmune neuroinflammation, including MS.
PL
Chemokiny są zasadowymi białkami o małej masie cząsteczkowej, wahającej się w granicach 6-14 kDa. Ze względu na właściwości fizjologiczne chemokiny dzieli się na limfoidalne (konstytutywne lub homeostatyczne) oraz prozapalne (indukowane). Do chemokin limfoidalnych zaliczamy m.in. chemokiny CCL19, CCL21, CCL25, CCL27, CXCL12 i CXCL13, które ulegają konstytutywnej ekspresji w określonych mikrośrodowi-skach narządów limfatycznych oraz tkanek obwodowych. Chemokiny prozapalne, m.in. CCL1, CCL2, CCL11, CCL17 i CCL22, których ekspresja indukowana jest przez inne cytokiny prozapalne, takie jak IL-Ιβ lub TNF, pojawiają się głównie w przebiegu reakcji zapalnej. Chemokiny oddziałują na komórki docelowe poprzez rodopsynopodobne receptory związane z białkiem G. Pierwotną funkcją chemokin jest stymulowanie ukierunkowanej migracji różnych rodzajów komórek. Ponadto cząsteczki te regulują proces zapalenia i różnicowanie komórek immunologicznych. Fizjologicznie chemokiny ulegające konstytutywnej ekspresji w obrębie ośrodkowego układu nerwowego (OUN) mogą pełnić rolę w inicjacji migracji multipotencjalnych komórek progenitorowych i neuronów w trakcie rozwoju mózgu oraz mogą funkcjonować jako czynniki troficzne dla neuronów. Wykazano ścisłą zależność pomiędzy ekspresją chemokin i napływem komórek zapalnych do OUN podczas rozwoju modelu doświadczalnego stwardnienia rozsianego (SM) - doświadczalnego autoim-munizacyjnego zapalenia mózgu i rdzenia kręgowego (experimental autoimmune encephalomyelitis, EAE). W OUN zwierząt z EAE wykazano podwyższoną ekspresję mRNA kodującego chemokiny CCL2, CCL3, CCL4, CCL5, CCL7 i CXCL10 oraz receptory chemokinowe CCR2, CCR5, CCR8, CXCR2, CXCR3, CXCR4 i CX3CR1. Wyniki te sugerują, że chemokiny i ich receptory mogą odgrywać istotną rolę w rozwoju autoimmunizacyjnego zapalenia w OUN, w tym również i w przebiegu SM.
Discipline
Year
Volume
8
Issue
1
Pages
16-24
Physical description
References
  • 1. Kim C.H., Broxmeyer H.E.: Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J. Leukoc. Biol. 1999; 65: 6-15.
  • 2. Imai T., Hieshima K., Haskell C. i wsp.: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997; 91: 521-530.
  • 3. Bonecchi R., Polentarutti N., Luini W i wsp.: Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-γ in human neutrophils. J. Immunol. 1999; 162: 474-479.
  • 4. Weber M., Uguccioni M., Ochensberger B. i wsp.: Monocyte chemotactic protein MCP-2 activates human basophil and eosinophil leukocytes similar to MCP-3. J. Immunol. 1995; 154: 4166-4172.
  • 5. Murphy P.M., Baggiolini M., Charo I.F. i wsp.: International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 2000; 52: 145-176.
  • 6. von Andrian U.H., Mackay C.R.: T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 2000: 343: 1020-1034.
  • 7. Bonecchi R., Sozzani S., Stine J.T. iwsp.: Divergent effects of interleukin-4 and interferon-γ on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses. Blood 1998; 92: 2668-2671.
  • 8. Lomize A.L., Pogozheva I.D., Mosberg H.I.: Structural organization of G-protein-coupled receptors. J. Comput. Aided Mol. Des. 1999; 13: 325-353.
  • 9. Rodriguez-Frade J.M., Vila-Coro A.J., de Ana A.M. iwsp.: The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl Acad. Sci. USA 1999; 96: 3628-3633.
  • 10. Mellado M., Rodriguez-Frade J.M., Vila-Coro A.J. i wsp.: Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001; 20:2497-2507.
  • 11. D’Apuzzo M., Rolink A., Loetscher M. i wsp.: The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur. J. Immunol. 1997; 27: 1788-1793.
  • 12. Legler D.F., Loetscher M., Roos R.S. i wsp.: B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 1998; 187: 655-660.
  • 13. Yoshie O., Imai T, Nomiyama H.: Novel lymphocyte-specific CC chemokines and their receptors. J. Leukoc. Biol. 1997; 62: 634-644.
  • 14. Yoshida R., Imai T., Hieshima K. i wsp.: Molecular cloning of a novel human CC chemokine EBI1-ligand chemokine that is a specific functional ligand for EBI1, CCR7. J. Biol. Chem. 1997; 272: 13803-13809.
  • 15. Cole K.E., Strick C.A., Paradis TJ. i wsp.: Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 1998; 187: 2009-2021.
  • 16. Imai T, Chantry D., Raport C.J. i wsp.: Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J. Biol. Chem. 1998; 273:1764-1768.
  • 17. Baggiolini M.: Chemokines and leukocyte traffic. Nature 1998; 392: 565-568.
  • 18. Sunnemark D., Eltayeb S., Nilsson M. i wsp.: CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J. Neuroinflammation. 2005; 2: 17.
  • 19. Qin S., Rottman J.B., Myers P. i wsp.: The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 1998; 101: 746-754.
  • 20. Sallusto F., Mackay C.R., Lanzavecchia A.: Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997; 277: 2005-2007.
  • 21. Rubbert A., Combadiere C., Ostrowski M. i wsp.: Dendritic cells express multiple chemokine receptors used as coreceptors for HIV entry. J. Immunol. 1998; 160: 3933-3941.
  • 22. Yoshimura T, Matsushima K., Oppenheim J.J., Leonard E.J.: Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J. Immunol. 1987; 139: 788-793.
  • 23. Wu D., LaRosa G.J., Simon M.I.: G protein-coupled signal transduction pathways for interleukin-8. Science 1993; 261: 101-103.
  • 24. Baggiolini M., Dewald B., Moser B.: Interleukin-8 and related chemotactic cytokines - CXC and CC chemokines. Adv. Immunol. 1994; 55: 97-179.
  • 25. Baggiolini M., Dahinden C. A.: CC chemokines in allergic inflammation. Immunol. Today 1994; 15: 127-133.
  • 26. Ma Q., Jones D., Borghesani PR. i wsp.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA 1998; 95: 9448-9453.
  • 27. Harrison J.K., Jiang Y., Chen S. i wsp.: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 1998; 95: 10896-10901.
  • 28. Cyster J.G.: Chemokines and cell migration in secondary lymphoid organs. Science 1999; 286: 2098-2102.
  • 29. Yu Y.R., Fong A.M., Combadiere C. i wsp.: Defective antitumor responses in CX3CR1-deficient mice. Int. J. Cancer 2007; 121: 316-322.
  • 30. Westermann J., Nguyen-Hoai T, Baldenhofer G. i wsp.: CCL19 (ELC) as an adjuvant for DNA vaccination: induction of a TH1-type T-cell response and enhancement of antitumor immunity. Cancer Gene Ther. 2007; 14: 523-532.
  • 31. Iikura M., Miyamasu M., YamaguchiM. iwsp.: Chemokine receptors in human basophils: inducible expression of functional CXCR4. J. Leukoc. Biol. 2001; 70: 113-120.
  • 32. Fairchild R.L., VanBuskirk A.M., Kondo T. i wsp.: Expression of chemokine genes during rejection and long-term acceptance of cardiac allografts. Transplantation 1997; 63: 1807-1812.
  • 33. Murphy P.M.: International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev. 2002; 54: 227-229.
  • 34. Zlotnik A., Yoshie O.: Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121-127.
  • 35. Bolin L.M., Murray R., Lukacs N.W i wsp.: Primary sensory neurons migrate in response to the chemokine RANTES. J. Neuroimmunol. 1998; 81: 49-57.
  • 36. Hesselgesser J., Taub D., Baskar P. iwsp.: Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr. Biol. 1998; 8: 595-598.
  • 37. Lazarini F., Casanova P., Tham T.N. i wsp.: Differential signalling of the chemokine receptor CXCR4 by stromal cell-derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes. Eur. J. Neurosci. 2000; 12: 117-125.
  • 38. Lazarini F., Tham T.N., Casanova P. i wsp.: Role of the α-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 2003: 42: 139-148.
  • 39. Vilz T.O., Moepps B., Engele J. i wsp.: The SDF-1/CXCR4 pathway and the development of the cerebellar system. Eur. J. Neurosci. 2005; 22: 1831-1839.
  • 40. Zou Y.R., Kottmann A.H., KurodaM. iwsp.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595-599.
  • 41. Dziembowska M., Tham T.N., Lau P. i wsp.: A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 2005; 50: 258-269.
  • 42. Heesen M., Tanabe S., Berman M.A. i wsp.: Mouse astrocytes respond to the chemokines MCP-1 and KC, but reverse transcriptase-polymerase chain reaction does not detect mRNA for the KC or new MCP-1 receptor. J. Neurosci. Res. 1996; 45: 382-391.
  • 43. Tanabe S., Heesen M., Yoshizawa I. i wsp.: Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J. Immunol. 1997; 159:905-911.
  • 44. Giovannelli A., Limatola C., Ragozzino D. i wsp.: CXC chemokines interleukin-8 (IL-8) and growth-related gene product α (GROa) modulate Purkinje neuron activity in mouse cerebellum. J. Neuroimmunol. 1998; 92: 122-132.
  • 45. Limatola C., Ciotti M.T, Mercanti D. i wsp.: The chemokine growth-related gene product β protects rat cerebellar granule cells from apoptotic cell death through a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Proc. Natl Acad. Sci. USA2000; 97: 6197-6201.
  • 46. Meucci O., Fatatis A., Simen A.A. i wsp.: Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl Acad. Sci. USA 1998; 95: 14500-14505.
  • 47. Begley L., Monteleon C., Shah R.B. i wsp.: CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 2005; 4: 291-298.
  • 48. Hogaboam C.M., Bone-Larson C.L., Steinhauser M.L. i wsp.: Novel CXCR2-dependent liver regenerative qualities of ELR-containing cXc chemokines. FASEB J. 1999; 13: 1565-1574.
  • 49. Wu Q., Miller R.H., Ransohoff R.M. i wsp.: Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J. Neurosci. 2000; 20: 2609-2617.
  • 50. Bajetto A., Barbero S., Bonavia R. i wsp.: Stromal cell-derived factor-1a induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J. Neurochem. 2001; 77: 1226-1236.
  • 51. Hulkower K., Brosnan C.F., Aquino D.A. i wsp.: Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol. 1993; 150: 2525-2533.
  • 52. Ransohoff R.M., Hamilton TA., Tani M. i wsp.: Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 1993; 7: 592-600.
  • 53. Godiska R., Chantry D., Dietsch G.N., Gray P.W.: Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol. 1995; 58: 167-176.
  • 54. Glabinski A.R., Tani M., Tuohy VK. i wsp.: Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav. Immun. 1995; 9: 315-330.
  • 55. Glabinski A.R., TaniM., Strieter R.M. iwsp.: Synchronous synthesis of alpha- and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am. J. Pathol. 1997; 150: 617-630.
  • 56. Berman J.W., Guida M.P., Warren J. i wsp.: Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J. Immunol. 1996; 156: 3017-3023.
  • 57. Jee Y., Yoon W.K., Okura Y. i wsp.: Upregulation of monocyte chemotactic protein-1 and CC chemokine receptor 2 in the central nervous system is closely associated with relapse of autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol. 2002; 128: 49-57.
  • 58. McColl S.R., Mahalingam S., Staykova M. i wsp.: Expression of rat I-TAC/CXCL11/SCYA11 during central nervous system inflammation: comparison with other CXCR3 ligands. Lab. Invest. 2004; 84: 1418-1429.
  • 59. Miyagishi R., Kikuchi S., Takayama C. i wsp.: Identification of cell types producing RANTES, MIP-1a and MIP-^ in rat experimental autoimmune encephalomyelitis by in situ hybridization. J. Neuroimmunol. 1997; 77: 17-26.
  • 60. Karpus W.J., Fife B.T., Kennedy K.J.: Immunoneutralization of chemokines for the prevention and treatment of central nervous system autoimmune disease. Methods 2003; 29: 362-368.
  • 61. Karpus W.J., Lukacs N.W., McRae B.L. i wsp.: An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 1995; 155: 5003-5010.
  • 62. Kennedy K.J., Strieter R.M., Kunkel S.L. i wsp.: Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1a and monocyte chemotactic protein-1. J. Neuroimmunol. 1998; 92: 98-108.
  • 63. Fukumoto N., Shimaoka T, Fujimura H. i wsp.: Critical roles of CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in the pathogenesis of both acute and adoptive transfer experimental autoimmune encephalomyelitis. J. Immunol. 2004; 173: 1620-1627.
  • 64. Magliozzi R., Columba-Cabezas S., Serafini B., Aloisi F.: Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2004; 148: 11-23.
  • 65. Alt C., Laschinger M., Engelhardt B.: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2002: 32: 2133-2144.
  • 66. Columba-Cabezas S., Serafini B., Ambrosini E., Aloisi F.: Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol. 2003; 13: 38-51.
  • 67. Ambrosini E., Columba-Cabezas S., Serafini B. i wsp.: Astrocytes are the major intracerebral source of macrophage inflammatory protein-3a/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 2003; 41: 290-300.
  • 68. Kohler R.E., Caon A.C., Willenborg D.O. i wsp.: A role for macrophage inflammatory protein-3 α/CC chemokine ligand 20 in immune priming during T cell-mediated inflammation of the central nervous system. J. Immunol. 2003; 170: 6298-6306.
  • 69. Columba-Cabezas S., Serafini B., Ambrosini E. i wsp.: Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J. Neuroimmunol. 2002; 130: 10-21.
  • 70. Hoffman L.M., Fife B.T., Begolka WS. i wsp.: Central nervous system chemokine expression during Theiler’s virus-induced demyelinating disease. J. Neurovirol. 1999; 5: 635-642.
  • 71. Rottman J.B., Slavin A.J., Silva R. i wsp.: Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur. J. Immunol. 2000; 30: 2372-2377.
  • 72. Eltayeb S., SunnemarkD., Berg A.L. iwsp.: Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease. J. Neuroimmunol. 2003; 142: 75-85.
  • 73. Fife B.T., Paniagua M.C., Lukacs N.W. i wsp.: Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T cells during experimental autoimmune encephalomyelitis. J. Neurosci. Res. 2001; 66: 705-714.
  • 74. Izikson L., Klein R.S., Charo I.F. i wsp.: Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR) 2. J. Exp. Med. 2000; 192: 1075-1080.
  • 75. Fife B.T., Huffnagle G.B., Kuziel WA., Karpus WJ.: CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 2000; 192: 899-905.
  • 76. Gaupp S., PittD., Kuziel WA iwsp.: Experimental autoimmune encephalomyelitis (EAE) in CCR2(-/-) mice: susceptibility in multiple strains. Am. J. Pathol. 2003; 162: 139-150.
  • 77. Bielecki B., Mazurek A., Wolinski P., Glabinski A.: Expression of chemokine receptors CCR7 and CCR8 in the CNS during ChREAE. Scand. J. Immunol. 2007; 66: 383-392.
  • 78. Kohler R.E., Comerford I., Townley S. i wsp.: Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol. w druku 2008.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-80d05e9f-d728-40ad-b8a2-73681d528150
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.