Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 17 | 4 | 181–188

Article title

Mikrobiota jelitowa iskładniki pokarmowe jako determinanty funkcji układu nerwowego. Część I. Mikrobiota przewodu pokarmowego

Content

Title variants

EN
Intestinal microbiota and nutrients as determinants of nervous system function. Part I. Gastrointestinal microbiota

Languages of publication

PL

Abstracts

PL
Schorzenia neuropsychiatryczne są jednym z najczęstszych problemów współczesnego świata. W samych tylko krajach Unii Europejskiej w 2016 roku zanotowano przynajmniej 164 mln osób cierpiących na te schorzenia. Mimo wieloletnich dociekań i ogromnych środków przeznaczanych na badania naukowe nie udało się jednoznacznie ustalić przyczyn niektórych spośród tych chorób, a w przypadku innych opcje terapeutyczne są mocno ograniczone. Mózgowie stanowi jedynie blisko 2% masy ciała człowieka, lecz wykorzystuje aż do 20% spoczynkowej przemiany materii. W przeciwieństwie do innych organów mózg nie ma możliwości akumulacji energii, więc jego funkcje uzależnione są od stałego dopływu głównego substratu energetycznego – glukozy. Jednocześnie fizjologia każdej komórki ludzkiego organizmu zależy od dostępności składników regulacyjnych, w tym witamin i pierwiastków śladowych pozyskiwanych z diety. Podstawy biologii komórki dowodzą, iż wybrane składniki żywności są niezbędne do zachowania właściwej funkcji neuronów, a przez to – transmisji sygnałów nerwowych. Wiadomo również, że składniki pokarmowe są wykorzystywane metabolicznie przez zespół mikroorganizmów jelitowych, a neuroaktywne i immunokompetentne produkty tych przemian drogą osi mózgowo-jelitowej przedostają się do mózgowia oraz wpływają na strukturę i funkcje regionów odpowiedzialnych za emocje, zdolności ruchowe i poznawcze. W pierwszej części artykułu przedstawiono wiadomości dotyczące mikrobioty jelitowej jako modulatora struktury i funkcji układu nerwowego. Szczególną uwagę zwrócono na dysbiozę jelitową w  przebiegu zaburzeń neurorozwojowych i neurodegeneracyjnych, rozpatrywaną aktualnie jako przyczyna i/lub czynnik warunkujący ich przebieg kliniczny. Zasugerowano także, że wspieranie mikrobioty jelitowej probiotykoterapią może być elementem profilaktyki chorób układu nerwowego i wspomagania ich leczenia podstawowego.
EN
Neuropsychiatric disorders are one of the most common problems in the modern world. In the European Union alone, at least 164 million cases of mental problems were reported in 2016. Despite many years of investigations and enormous resources devoted to scientific research, the causes of some of these diseases have not been clearly identified, and, in the case of others, treatment options are significantly limited. Although the brain weight accounts only for about 2 percent of the body weight, its oxygen consumption accounts for up to 20% of the resting energy metabolism. As opposed to other organs, the brain does not accumulate energy; therefore its functioning depends on the continuous supply of the main energetic substrate, i.e. glucose. At the same time, the physiology of every cell in the human body depends on the availability of regulatory components, including vitamins and trace elements, which are derived from the diet. As evidenced by the basics of cell biology, certain nutrients are essential for proper neuronal functioning and, consequently, nerve signal transmission. Nutrients are also known to be metabolically utilised by intestinal microorganisms, and the neuroactive and immunocompetent products of these transformations pass through the gut–brain axis into the brain and exert their effects on the structure and function of regions responsible for emotions as well as motor and cognitive abilities. The first part of the article presents information regarding intestinal microbiota as a structural and functional nervous system modulator. Particular attention is paid to intestinal dysbiosis in neurodevelopmental and neurodegenerative disorders, which is currently considered to be the cause and/or a factor determining their clinical course. It was also suggested that supporting gut microbiota with probiotic therapy may be an element of nervous system disease prevention and support the primary treatment of these conditions.

Discipline

Year

Volume

17

Issue

4

Pages

181–188

Physical description

Contributors

  • Zakład Biochemii i Żywienia Człowieka, Pomorski Uniwersytet Medyczny w Szczecinie, Szczecin, Polska
  • Zakład Biochemii iŻywienia Człowieka, Pomorski Uniwersytet Medyczny w Szczecinie, Szczecin, Polska
  • Zakład Biochemii iŻywienia Człowieka, Pomorski Uniwersytet Medyczny w Szczecinie, Szczecin, Polska
  • Klinika Gastroenterologii, Pomorski Uniwersytet Medyczny w Szczecinie, Szczecin, Polska

References

  • Adamczyk-Sowa M, Medrek A, Madej P et al.: Does the gut microbiota influence immunity and inflammation in multiple sclerosis pathophysiology? J Immunol Res 2017; 2017: 7904821.
  • American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. 5th ed., American Psychiatric Association Publishing, Arlington 2013.
  • Bailey MT, Cryan JF: The microbiome as a key regulator of brain, behavior and immunity: commentary on the 2017 named series. Brain Behav Immun 2017; 66: 18–22.
  • Barboza JL, Okun MS, Moshiree B: The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson’s disease. Expert Opin Pharmacother 2015; 16: 2449–2464.
  • Barichella M, Pacchetti C, Bolliri C et al.: Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 2016; 87: 1274–1280.
  • Barrett E, Ross RP, O’Toole PW et al.: γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012; 113: 411–417.
  • Bischoff SC, Barbara G, Buurman W et al.: Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
  • Braak H, de Vos RAI, Bohl J et al.: Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006; 396: 67–72.
  • Braak H, Del Tredici K, Rüb U et al.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24: 197–211.
  • Bruce-Keller AJ, Salbaum JM, Luo M et al.: Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 2015; 77: 607–615.
  • Cassani E, Privitera G, Pezzoli G et al.: Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol 2011; 57: 117–121.
  • Cattaneo A, Cattane N, Galluzzi S et al.; INDIA-FBP Group: Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60–68.
  • Chaves Filho AJM, Lima CNC, Vasconcelos SMM et al.: IDO chronic immune activation and tryptophan metabolic pathway: a potential pathophysiological link between depression and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80: 234–249.
  • Cryan JF, Dinan TG: Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13: 701–712.
  • Cryan JF, O’Mahony SM: The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011; 23: 187–192.
  • Davie JR: Inhibition of histone deacetylase activity by butyrate. J Nutr 2003; 133 (Suppl): 2485S–2493S.
  • De Angelis M, Francavilla R, Piccolo M et al.: Autism spectrum disorders and intestinal microbiota. Gut Microbes 2015; 6: 207–213.
  • Eckburg PB, Bik EM, Bernstein CN et al.: Diversity of the human intestinal microbial flora. Science 2005; 308: 1635–1638.
  • Eisenstein M: Microbiome: bacterial broadband. Nature 2016; 533: S104–S106.
  • Fasano A: Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91: 151–175.
  • Felice VD, Quigley EM, Sullivan AM et al.: Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 2016; 27: 1–8.
  • Foster JA, McVey Neufeld KA: Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36: 305–312.
  • Gevi F, Zolla L, Gabriele S et al.: Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 2016; 7: 47.
  • Grigg JB, Sonnenberg GF: Host-microbiota interactions shape local and systemic inflammatory diseases. J Immunol 2017; 198: 564–571.
  • Hoban AE, Stilling RM, Ryan FJ et al.: Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 2016; 6: e774.
  • Hold GL, Schwiertz A, Aminov RI et al.: Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 2003; 69: 4320–4324.
  • Jandhyala SM, Talukdar R, Subramanyam C et al.: Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787–8803.
  • Jenkins TA, Nguyen JC, Polglaze KE et al.: Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016; 8: E56.
  • Kang DW, Adams JB, Gregory AC et al.: Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017; 5: 10.
  • Keshavarzian A, Green SJ, Engen PA et al.: Colonic bacterial composition in Parkinson’s disease. Mov Disord 2015; 30: 1351–1360.
  • Konturek PC, Haziri D, Brzozowski T et al.: Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol 2015; 66: 483–491.
  • Krakowiak O, Nowak R: [Human digestive tract microflora – significance, development, modification]. Post Fitoterapii 2015; 16: 193–200.
  • Kushak RI, Winter HS, Buie TM et al.: Analysis of the duodenal microbiome in autistic individuals: association with carbohydrate digestion. J Pediatr Gastroenterol Nutr 2017; 64: e110–e116.
  • Laukens D, Brinkman BM, Raes J et al.: Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 2016; 40: 117–132.
  • Lavasani S, Dzhambazov B, Nouri M et al.: A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One 2010; 5: e9009.
  • Lee JY, Kim N, Nam RH et al.: Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner. PLoS One 2017a; 12: e0188992.
  • Lee SH: Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 2015; 13: 11–18.
  • Lee Y, Park JY, Lee EH et al.: Rapid assessment of microbiota changes in individuals with autism spectrum disorder using bacteriaderived membrane vesicles in urine. Exp Neurobiol 2017b; 26: 307–317.
  • Li Q, Han Y, Dy ABC et al.: The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017; 11: 120. Lim SL, Rodriguez-Ortiz CJ, Kitazawa M: Infection, systemic inflammation, and Alzheimer’s disease. Microbes Infect 2015; 17: 549–556.
  • Luczynski P, Whelan SO, O’Sullivan C et al.: Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci 2016; 44: 2654–2666.
  • Madore C, Leyrolle Q, Lacabanne C et al.: Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast 2016; 2016: 3597209.
  • Maheshwari P, Eslick GD: Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis 2015; 43: 957–966.
  • Marlicz W, Łoniewski I, Grimes DS et al.: Nonsteroidal anti-inflammatory drugs, proton pump inhibitors, and gastrointestinal injury: contrasting interactions in the stomach and small intestine. Mayo Clin Proc 2014; 89: 1699–1709.
  • Marlicz W, Ostrowska L, Łoniewski I: Flora bakteryjna jelit i jej potencjalny związek z otyłością. Endokrynol Otył Zab Przem Mat 2013; 9: 20–28.
  • Mayer EA: Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci 2011; 12: 453–466.
  • Mayer EA, Knight R, Mazmanian SK et al.: Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 2014; 34: 15490–15496.
  • McCormick C, Hepburn S, Young GS et al.: Sensory symptoms in children with autism spectrum disorder, other developmental disorders and typical development: a longitudinal study. Autism 2016; 20: 572–579.
  • Mertsalmi TH, Aho VTE, Pereira PAB et al.: More than constipation – bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 2017; 24: 1375–1383.
  • Minato T, Maeda T, Fujisawa Y et al.: Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS One 2017; 12: e0187307.
  • Miyake S, Kim S, Suda W et al.: Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS One 2015; 10: e0137429.
  • Moeller AH, Caro-Quintero A, Mjungu D et al.: Cospeciation of gut microbiota with hominids. Science 2016; 353: 380–382.
  • Ochoa-Repáraz J, Mielcarz DW, Haque-Begum S et al.: Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes 2010; 1: 103–108.
  • Perez-Lloret S, Rey MV, Pavy-Le Traon A et al.: Emerging drugs for autonomic dysfunction in Parkinson’s disease. Expert Opin Emerg Drugs 2013; 18: 39–53.
  • Pineiro M, Stanton C: Probiotic bacteria: legislative framework – requirements to evidence basis. J Nutr 2007; 137 (Suppl 2): 850S–853S.
  • Pistollato F, Sumalla Cano S, Elio I et al.: Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74: 624–634.
  • Powell N, Walker MM, Talley NJ: The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 2017; 14: 143–159.
  • Rea K, Dinan TG, Cryan JF: The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 2016; 4: 23–33.
  • Rudzki L, Szulc A: [Influence of intestinal microbiota on the central nervous system and its potential in the treatment of psychiatric disorders]. Farmakoter Psychiatr Neurol 2013; 2: 69–77.
  • Ruff WE, Kriegel MA: Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med 2015; 21: 233–244.
  • Salvo Romero E, Alonso Cotoner C, Pardo Camacho C et al.: The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig 2015; 107: 686–696.
  • Sampson TR, Debelius JW, Thron T et al.: Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167: 1469–1480.e12.
  • Sano C: History of glutamate production. Am J Clin Nutr 2009; 90: 728S–732S. Sharon G, Sampson TR, Geschwind DH et al.: The central nervous system and the gut microbiome. Cell 2016; 167: 915–932.
  • Sonnenburg JL, Bäckhed F: Diet–microbiota interactions as moderators of human metabolism. Nature 2016; 535: 56–64.
  • Soscia SJ, Kirby JE, Washicosky KJ et al.: The Alzheimer’s diseaseassociated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5: e9505.
  • Steenbergen L, Sellaro R, van Hemert S et al.: A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 2015; 48: 258–264.
  • Stilling RM, Cryan JF: Host response: a trigger for neurodegeneration? Nat Microbiol 2016; 1: 16129. Strati F, Cavalieri D, Albanese D et al.: New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017; 5: 24.
  • Svensson E, Horváth-Puhó E, Thomsen RW et al.: Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 2015; 78: 522–529.
  • Szachta P, Skonieczna-Żydecka K, Adler G et al.: Immune related factors in pathogenesis of autism spectrum disorders. Eur Rev Med Pharmacol Sci 2016; 20: 3060–3072.
  • Tankou SK, Regev K, Healy BC et al.: Investigation of probiotics in multiple sclerosis. Mult Scler 2018; 24: 58–63.
  • Tanous C, Chambellon E, Sepulchre AM et al.: The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. J Bacteriol 2005; 187: 5019–5022.
  • Tillisch K, Mayer EA, Gupta A et al.: Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women. Psychosom Med 2017; 79: 905–913.
  • Udit S, Gautron L: Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Front Neurosci 2013; 7: 134.
  • Ulluwishewa D, Anderson RC, McNabb WC et al.: Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011; 141: 769–776.
  • Viggiano D, Ianiro G, Vanella G et al.: Gut barrier in health and disease: focus on childhood. Eur Rev Med Pharmacol Sci 2015; 19: 1077–1185.
  • Wasilewska J, Jarocka-Cyrta E, Kaczmarski M: [Gastrointestinal abnormalities in children with autism]. Pol Merkur Lekarski 2009; 27: 40–43.
  • Wekerle H: Brain autoimmunity and intestinal microbiota: 100 trillion game changers. Trends Immunol 2017; 38: 483–497.
  • Wu H, Tremaroli V, Bäckhed F: Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab 2015; 26: 758–770.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-8092f827-2b24-4534-b72c-0d2e3edc0b4b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.