Preferences help
enabled [disable] Abstract
Number of results
2016 | 4 | 1-19
Article title

Biological warfare agents

Title variants
Languages of publication
Various types of biological weapons have been known and practiced throughout history, including the use of biological agents such as microbes and plants, as well as biotoxins and the venoms that can be derived from them. In ancient civilisations, the attempt was to infect and kill enemies by throwing cadavers into water wells. Emperor Barbarossa during the battle of the Italian town, Tortona, in 1155, did the same. In modern times, America and the Soviet Union also undertook biological warfare and anti-biological warfare protection activities. This even intensified after WWII. When the Soviet forces captured and interrogated some Japanese scientists in 1945, they utilized the obtained information in their own biowarfare program and their research accelerated in 1946. Following this, a series of new biowarfare study centres and production facilities was constructed in the 1950s. The Soviet biowarfare program included tularemia, anthrax, brucellosis, plague, glanders, marburg virus, smallpox virus, and VEE virus. During the time of the Korean War, it was believed that biowarfare agents were used by America against Soviet Union. The Americans had began their own program in Fort Detrick (former Camp Detrick) in 1943 and a new production facility at Pine Bluff Arsenal in Arkansas was constructed. The United States of America started producing tons of Brucella suis in 1954. In the peak year of their program, they involved about 3,400 people and a number of agents: Bacillus anthracis, Francisella tularensis, Brucella suis, Coxiella burnetti, Venezuelan equine encephalitis virus, yellow fever, botulin, Staphylococcal enterotoxin, and the anti-crop agents Pyricularia oryzae and Puccinia graminis. Due to public pressure, President Nixon declared a unilateral halt in 1969 to biological weapon projects. The only permitted research was defensive, such as diagnostic, vaccines, and chemotherapies tests – as evidenced in the UK where the base in Porton Down was converted into a defence institution.
Physical description
  • Department of Life Science, College of Bionano, Gachon University, South Korea
  • [1] Frischknecht, F., The history of biological warfare. European Molecular Biology Organization, 2003. 4(Special issue): p. S47-S52.
  • [2] Wheelis, M., Biological Warfare at the 1346 Siege of Caffa. Emerging Infectious Diseases, 2002. 8(9): p. 971-975.
  • [3] Riedel, S., Biological warfare and bioterrorism: a historical review. Baylor University Medical Center Proceedings, 2004. 17(4): p. 400-406.
  • [4] Metcalfe, N., A short history of biological warfare. Medicine, Conflict and Survival, 2002. 18(3): p. 271-282.
  • [5] Roffey, R., Tegnell, A., and Elgh, F., Biological warfare in a historical perspective. Clinical Microbiology and Infection, 2002. 8(8): p. 450-454.
  • [6] Pichtel, J., Terrorism and WMDs: Awareness and Response. CRC Press, Boca Raton, 2011: p. 127.
  • [7] Willis, E.A., Seascape with monkeys and guinea-pigs: Britain's biological weapons research programme,1948–54. Medicine, Conflict and Survival, 2003. 19(4): p. 285-302.
  • [8] Szinicz, L., History of chemical and biological warfare agents. Toxicology, 2005. 214: p. 167-181.
  • [9] Roffey, R., Tegnell, A., and Elgh, F., Biological weapons and bioterrorism preparedness: importance of public-health awareness and international cooperation. Clinical Microbiology and Infection, 2002. 8(8): p. 522-528.
  • [10] Millet, P.D., The Biological and Toxin Weapons Convention. Revue Scientifique Et Technique De L`Office Iinternational Des Epizooties, 2006. 25(1): p. 35-52.
  • [11] Leitenberg, M., Biological Weapons in the Twentieth Century: A Review and Analysis. Critical reviews in microbiology, 2001. 27(4): p. 267-320.
  • [12] Gunn, A., and Pitt, S. J., Microbes as forensic indicators. Tropical biomedicine, 2012. 29(3): p. 311330.
  • [13] Enserink, M., and Kaiser, J., U.N. Taps special labs to investigate syrian attack. Science, 2013. 341(6150): p. 1050-1051.
  • [14] Bush, L.M., andPerez, M. T., The Anthrax Attacks 10 Years Later. Annals of internal medicine, 2012. 156(1): p. 41-44.
  • [15] Sternbach, G., The history of anthrax. The Journal of Emergency Medicine, 2003. 24(4): p. 463-467.
  • [16] Lim, D.V., Simpson, J. M., Kearns, E. A., Kramer, M. F., Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 2005. 18, p. 583-607.
  • [17] Bhalla, D.K., and Warheit, D. B., Biological agents with potential for misuse: a historical perspective and defensive measures. Toxicology and Applied Pharmacology, 2004. 199: p. 71-84.
  • [18] Chakraborty, A., Khan, S. U., Hasnat, M. A., Parveen, S., Islam, M. S., Mikolon, A., Chakraborty, R. J., Ahmed, B., Ara, K., Haider, N., Zaki, S. R., Hoffmaster, A. R., Rahman, M., Luby, S. P., and Hossain, M J., Anthrax Outbreaks in Bangladesh, 2009–2010. American journal of tropical medicine and hygiene, 2012. 86(4): p. 703-710.
  • [19] Schwartz, M., Dr. Jekyll and Mr. Hyde: A short history of anthrax. Molecular Aspects of Medicine, 2009. 30: p. 347-355.
  • [20] Sweeney, D. A., Hicks, C. W., Cui, X., Li, Y. and Eichacker, P. Q., Anthrax infection. American Journal of Respiratory and Critical Care Medicine, 2011. 184(12): p. 1333-1341.
  • [21] Ågren, J., Hamidjaja, R. A., Hansen, T., Ruuls, R., Thierry, S., Vigre, H., Janse, I., Sundström, A., Segerman, B., Koene, M., Löfström, C., Van Rotterdam, B. and Derzelle, S., In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences. Virulence, 2013. 4(8): p. 671-685.
  • [22] Tang, S., Moayeri, M., Chen, Z., Harma, H., Zhao, J., Hu, H., Purcell, R. H., Leppla, S. H. and Hewlett, I. K., Detection of anthrax toxin by an lltrasensitive immunoassay using europium nanoparticles. Clinical and vaccine immunology, 2009. 16(3): p. 408-413.
  • [23] Amoako, K.K., Janzen, T. W., Shields, M. J., Hahn, K. R., Thomas, M. C., and Goji, N., Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology. International Journal of Food Microbiology 2013. 165: p. 319-325.
  • [24] Franco, M.P., Mulder, M., Gilman, R. H., Smits, H. L., Human brucellosis. Lancet infectious diseases, 2007. 7: p. 775-786.
  • [25] Kose, S., Serin, S., Senger, E., Akkoclu, G., Kuzucu, L., Ulu, Y., Ersan, G., and Oguz, F., Clinical manifestations, complications, and treatment of brucellosis: evaluation of 72 cases Turkish journal of medical sciences, 2014. 44: p. 220-223.
  • [26] Galińska, E.M.a.Z., J., Brucellosis in humans – etiology, diagnostics, clinical forms. Annals of Agricultural and Environmental Medicine, 2013. 20(2): p. 233-238.
  • [27] Debeaumont, C., Falconnet, P. A. and Maurin, M., Real-time PCR for detection of Brucella spp. DNA in human serum samples. European journal of clinical microbiology and infectious dieseases, 2005. 24(12): p. 842-845.
  • [28] Magnarelli, L., Levy, S., and Koski, R., Detection of antibodies to Francisella tularensis in cats. Research in vetenerary science, 2007. 82: p. 22-26.
  • [29] Kleo, K., Schafer, D., Klar, S., Jacob, D., Grunow, R., and Lisdat, F., Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring. Anal Bioanal Chem, 2012. 404: p. 843-851.
  • [30] Penn, R. L., Francisella tularensis (tularemia). Mandell, Douglas and Bennett’s principles and practice of infectious diseases, 2005. 2: p. 2927-2937.
  • [31] Dennis, D. T., Inglesby, T.V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Fine, A. D., Friedlander, A. M., Hauer, J., Layton, M., Lillibridge, S. R., McDade, J. E., Osterholm, M. T., O'Toole, E., Parker, G., Perl, T. M., Russel, P. K., and Tonat, K., Tularemia as a biological weapon. JAMA: the journal of the American Medical Association, 2001. 285(21): p. 2763-2773.
  • [32] Su, J., Yang, J., Zhao, D., Kawula, T. H., Banas, J. A., and Zhang, JR., Genomewide identification of Francisella tularensis virulence determinants. Infection and immunity, 2007. 75(6): p. 3089-3101.
  • [33] Johansson, A., Ibrahim, A., Göransson, I., Eriksson, U., Gurycova, D., Clarridge, J. E, and Sjöstedt, A., Evaluation of PCR-Based Methods for Discrimination ofFrancisella Species and Subspecies and Development of a Specific PCR That Distinguishes the Two Major Subspecies of Francisella tularensis. Journal of clinical microbiology, 2000. 38(11): p. 4180-4185.
  • [34] Bystrom, M., Bocher, S., Magnusson, A., Prag, J., Johansson, A., Tularemia in Denmark: identification of a Francisella tularensis subsp. holarctica strain by real-time PCR and high-resolution typing by multiple-locus variable-number tandem repeat analysis. Journal of clinical microbiology 2005. 43(10): p. 5355-5358.
  • [35] Simşek, H., Taner, M., Karadenizli, A., Ertek, M., and Vahaboğlu, H., Identification of Francisella tularensis by both culture and real-time TaqMan PCR methods from environmental water specimens in outbreak areas where tularemia cases were not previously reported. Eur J Clin Microbiol Infect Dis., 2012 31(9): p. 2353-2357.
  • [36] Versage, J.L., Severin, D. D., Chu, M.C. and Petersen, J. M., Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. Journal of clinical microbiology, 2003. 41: p. 5492-5499.
  • [37] Porsch-Ozcürümez, M., Kischel, N., Priebe, H., Splettstösser, W., Finke, E. J., Grunow, R., Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin Diagn Lab Immunol, 2004. 11(6): p. 1008-1015.
  • [38] Pohanka, M., and Skládal, P., Electrochemical biosensors – principles and applications. Journal of applied biomedicine, 2008. 6: p. 57-64.
  • [39] Emanuel P. A., B.R., Dang J. L., McClanahan R., David J. C., Burgess R. J., Thompson J., Collins L., and Hadfield T., Detection of Francisella tularensis within infected mouse tissues by using a handheld PCR thermocycler. Journal of Clinical Microbiology, 2003. 41(2): p. 689-693.
  • [40] Bianucci, R., Rahalison, L., Massa, E. R., Peluso A., Ferroglio, E. and Signoli, M., Technical Note: A Rapid Diagnostic Test Detects Plague in Ancient Human Remains: An Example of the Interaction Between Archeological and Biological Approaches Southeastern France, 16th–18th Centuries). American journal of physical anthropology, 2008. 136: p. 361-367
  • [41] Didier Raoult, D. M., N., Bitam, I., Piarroux, R., Drancourt, M., Plague: History and contemporary analysis. Journal of infection, 2013. 66: p. 18-26.
  • [42] Harbeck, M., Seifert, L., Hansch, S., Wagner, D. M., Birdsell, D., Parise, K. L., Wiechmann, I., Grupe, G., Thomas,A., Keim,P., Zoller, L., Bramanti, B., Riehm, J. M. and Scholz, H. C., Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into justinianic plague. PLOS Pathogens, 2013. 9(5): p. e1003349.
  • [43] Louie, A., VanScoy, B., Liu, W., Kulawy, R., Brown, D., Heine, H. S. and Drusano, G. L., Comparative efficacies of candidate antibiotics against Yersinia pestis in an in vitro pharmacodynamic model. Antimicrobial Agents and Chemotherapy, 2011. 55(6): p. 2623-2628.
  • [44] Dentovskaya, S. V., Kopylov, P. K., Ivanov, S. A., Ageev, S. A. and Anisimov, A. P., Molecular bases of vaccine prevention of plague. Molecular Genetics, Microbiology and Virology, 2013. 28(3): p. 87-98.
  • [45] Heine, H. S., Chuvala, L,. Riggins, R., Hurteau, G., Cirz, R., Cass, R., Louie, A., Drusanoa, G. L., Natural History of Yersinia pestis Pneumonia in AerosolChallenged BALB/c Mice. Antimicrobial Agents and Chemotherapy, 2013. 57(5): p. 2010-2015.
  • [46] Simon, S., Demeure, C., Lamourette, P., Filali, S., Plaisance, M., Creminon, C., Volland, H. and Carniel, E., Fast and simple detection of Yersinia pestis applicable to field investigation of plague foci. PLOS ONE, 2013. 8(1): p. e54947.
  • [47] Maurin, M. A. R., D., Q Fever. Clinical Microbiology Reviews, 1999. 12(4): p. 518-553.
  • [48] Wielders, C., Morroy, G., Wever, P. C., Coutinho, R. A., Schneeberger, P. M. and Van der Hoek, W., Strategies for early detection of chronic Q-fever: a systematic review. European Journal of Clinical Investigation, 2013. 43(6): p. 616-639.
  • [49] Hechemy, K. E., History and Prospects of Coxiella burnetii Research Advances in experimental medicine and biology, 2012. 984: p. 1-11.
  • [50] Hernychova, L., Toman, R., Ciampor, F., Hubalek, M., Vackova, J., Macela, A. and Skultety, L., Detection and identification of Coxiella burnetii based on the mass spectrometric analyses of the extracted proteins. Analytical Chemistry, 2008. 80(18): p. 7097-7104.
  • [51] Thibault, F. M., Hernandez, E., Vidal, D. R., Girardet, M. and Cavallo, J. D., Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. Journal of Antimicrobial Chemotherapy 2004. 54: p. 1134-1138.
  • [52] Heiss, C., Burtnick, M. N., Roberts, R. A., Black, I., Azadi, P. and Brett, P. J., Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei. Carbohydrate research, 2013. 381: p. 6-11.
  • [53] Van Zandt, K. E., Greer, M. T. and Gelhaus, H. C., Glanders: an overview of infection in humans. Orphanet Journal of Rare Diseases, 2013. 8: p. 131.
  • [54] Dowling, A. J., Novel gain of function approaches for vaccine candidate identification in Burkholderia pseudomallei. Frontiers in cellular and infection microbiology, 2013. 2: p. 139.
  • [55] Hara, Y., Chin, C. Y., Mohamed, R., Puthucheary, S. D. and Nathan, S., Multipleantigen ELISA for melioidosis - a novel approach to the improved serodiagnosis of melioidosis. BMC infectious diseases, 2013. 13: p. 165.
  • [56] Limmathurotsakul D, D.D.A.B., Wuthiekanun V., Kaestli M., Mayo M, et al., Systematic Review and Consensus Guidelines for Environmental Sampling of Burkholderia pseudomallei. PLOS Neglected Tropical Diseases, 2013. 7(3): p. e2105.
  • [57] Van Cuyk, S., Deshpande, A., Hollander, A., Duval, N., Ticknor, L., Layshock, J., Gallegos-Graves, L. and Omberg,K. M., Persistence of Bacillus thuringiensis subsp. kurstaki in Urban Environments following Spraying. Applied and environmental microbiology, 2011. 77(22): p. 7954-7961.
  • [58] Valadares de Amorim, G., Whittome, B., Shore, B. and B. Levin, D. B., Identification of Bacillus thuringiensis Columbia, Canada, with Foray 48B after Aerial Spraying of Victoria, British from Environmental and Human Samples subsp. kurstaki Strain HD1-Like Bacteria I. Applied and environmental microbiology, 2001. 67(3): p. 1035-1043.
  • [59] Samples J. R., B. H. J. I. D., Ocular infection caused by a biological insecticide. Journal of infectious diseases, 1983. 148(3).
  • [60] Hernandez E., R.F., Cruel T., Ducoureau J. P., Alonso J. M., Cavallo J. D., Bacillus thuringiensis serovar H34-konkurkian superinfection: report of one case and experimental evidence of pathogenicity in immunosupressed mice. Journal of clinical microbiology, 1998. 36(7): p. 2138-2139.
  • [61] Hendriksen, N. B. A. H., B. M., Detection of Bacillus thuringiensis kurstaki HD1on cabbage for human consumption. FEMS microbiology letters, 2006. 257(1): p. 106-111.
  • [62] Duckworth, D.H., Who Discovered Bacteriophage? Bacteriological reviews, 1976. 40(4): p. 793802.
  • [63] Verheust, C., Pauwels, K., Mahillon, J., Helinski, D. R. and Herman, P., Contained Use of Bacteriophages: Risk Assessment and Biosafety Recommendations. Applied biosafety, 2010. 15(1): p. 3244.
  • [64] Brussow, H., Canchaya, C. and Hardt, W., Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion. Microbiology and molecular biology reviews, 2004. 68(3): p. 560-602.
  • [65] Wagner, P.L.a.W., M. K., Bacteriophage control of bacterial virulence. Infection and Immunity, 2002. 70(8): p. 3985-3993.
  • [66] Fan, H.a.T., Y., Potential Duel-Use of Bacteriophage Related Technologies in Bioterrorism and Biodefense. Journal of bioterrorism and biodefense, 2012. 3(121): p. 4 pages.
  • [67] Litman, G. W., Rast, J. P., Shamblott, M. J., Haire, R. N., Hulst, M., Roess, W., Litman, R. T., Hinds-Frey, K. R., Zilch, A. and Amemiyag, C. T., Phylogenetic Diversification of Immunoglobulin Genes and the Antibody Repertoire’. Molecular biology and evolution, 1993. 10(1): p. 60-72.
  • [68] Jayasena, S. D., Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999. 45: p. 1628-1650.
  • [69] Khor, S. M., Thordarson, P. and Gooding, J. J., The impact of antibody/epitope affinity strength on the sensitivity of electrochemical immunosensors for detecting small molecules. Analytical and Bioanalytical Chemistry, 2013. 405: p. 3889-3898.
  • [70] Tate, J.a.W., G., Interferences in Immunoassay. The clinical biochemist reviews, 2004. 25(2): p. 105-120.
  • [71] Alberts B, J.A., Lewis J, et al., Molecular Biology of the Cell, 4th edition, New York. Garland Science, 2002.
  • [72] Wang, W., Singh, S., Zeng, D. L., King, K. and Nema, S., Antibody Structure, Instability, and Formulation. Journal of pharmaceutical science, 2007. 96(1): p. 1-26.
  • [73] Kaneko, Y., Nimmerjahn, F. and Ravetch, J. V, Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation. Science, 2006. 313(5787): p. 670-673.
  • [74] Simister, N. E., Placental transport of immunoglobulin G. Vaccine, 2003. 21: p. 3365-3369.
  • [75] Ehrenstein, M. R. A. N., C. A., The importance of natural IgM: scavenger, protector and regulator. Nature Reviews Immunology, 2010. 10: p. 778-786.
  • [76] Underdown, B.J., Immunoglobulin A: Strategic Defense Initiative at the Mucosal Surface Annual reviews of immunology, 1986. 4: p. 389-417.
  • [77] Vladutiu, A. O., Immunoglobulin D: Properties, Measurement, and Clinical Relevance. Clinical and vaccine immunology, 2000. 7(2): p. 131-140.
  • [78] Buckley, R. H. A. F., S. A., Serum IgD and IgE Concentrations. The Journal of Clinical Investigation Volume 1975. 55: p. 157-165.
  • [79] Chambers, J. P., Arulanandam, B. P., Matta, L. L., Weis, A. and Valdes, J. J, Biosensor recognition element. Current Issues in Molecular Biology, 2008. 10(112).
  • [80] Emanuel, P.A., Dang, J., Gebhard, J. S., Aldrich, J., Garber, E., Kulaga, H., Stopa, P., Valdes, J. J. and Schultz, A. D., Recombinant antibodies: a new reagent for biological agent detection. Biosensors and Bioelectronics, 2000. 14: p. 751-759.
  • [81] Carey Hanly, W., Artwohl, J. E. and Bennett, B., Review of Polyclonal Antibody Production Procedures in Mammals and Poultry. ILAR journal, 1995. 37(3): p. 94-118.
  • [82] Khoudi, H., Laberge, S., Ferullo, J.M., Bazin, R., Darveau,A., Castonguay, Y., Allard, G., Lemieux, R. and Vezina, L. P., Production of a Diagnostic Monoclonal Antibody in Perennial Alfalfa Plants. Biotechnology and Bioengineering, 1999. 64(2): p. 135-143.
  • [83] Yamada, T., Therapeutic Monoclonal Antibodies. Keio Journal of Medicine, 2011. 60(2): p. 37-46.
  • [84] Hermanson, G.T., Bioconjugate techniques. Academic press, 2008. 2nd edition (Oxford, UK.).
  • [85] Liaoa, W. C. A. H., J. A., Improved activity of immobilized antibody by paratope orientation controller: Probing paratope orientation by electrochemical strategy and surface plasmon resonance spectroscopy. Biosensors and Bioelectronics, 2014. 55: p. 32-38.
  • [86] Yoon, M., Hwang, H. J. and Kim, J. H., Immobilization of antibodies on the selfassembled monolayer by antigen-binding site protection and immobilization kinetic control. Journal of biomedical science andenginering, 2011. 4: p. 242-247.
  • [87] Nassef, H. M., Civit, L., Fragoso, A., and O’Sullivan, C. K., Amperometric Immunosensor for Detection of Celiac Disease Toxic Gliadin Based on Fab Fragments. Anal. Chem., 2009. 81: p. 5299-5307.
  • [88] Seo, J., Lee, S. and Poulter, C. D., Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. Journal of the american chemical society, 2013. 135: p. 8973-8980.
  • [89] Zou, Y., Bian, M., Yiang, Z., Lian, L., Liu, W. and Xu, X., Comparison of four methods to generate immunoreactive fragments of a murine monoclonal antibody OC859 against human ovarian epithelial cancer antigen. Chinese medical sciences journal, 1995. 10(2): p. 78-81.
  • [90] Okamoto, S. O., Y., Maehashi, K., Inoue, K. and Matsumoto, K., Immunosensors based on graphene field-effect transistors fabricated using antigen-binding fragment. Japanese journal of applied physics, 2012. 51(6): p. 06FD08.
  • [91] Kausaite-Minkstimiene, A., Ramanavicius, A., Ruksnaitea, J. and Ramanaviciene, A., A surface plasmon resonance immunosensor for human growth hormone based on fragmented antibodies. Analytical methods, 2013. 5(18): p. 4757-4763.
  • [92] Baniukevic, J., Kirlyte, J., Ramanavicius, A., Ramanaviciene, A., Application of oriented and random antibody immobilization methods in immunosensor design. Sensors and Actuators B: Chemical, 2013. 189: p. 217-223.
  • [93] Sharma, H.a.M., R., Half Antibody Fragments Improve Biosensor Sensitivity without Loss of Selectivity. Analytical Chemistry, 2013. 85(4): p. 2472-2477.
  • [94] Gooding, J.J., Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 2006. 559 p. 137-151.
  • [95] Buchan, B.W., Ginocchio, C. C., Manii, R., Cavagnolo, R., Pancholi, P., Swyers, L., Thomson Jr, R. B., Anderson, C., Kaul, K. and Ledeboer, N. A., Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated MicroarrayBased Nucleic Acid Test. PLOS medicine, 2013. 10(7): p. e1001478.
  • [96] Davidson, C. A., Griffith, C. J., Peters, A. C. and Fielding, L. M., Evaluation of two methods for monitoring surface cleanliness-ATP bioluminescence and traditional hygiene swabbing. Luminiscence, 1999. 14: p. 33-38.
  • [97] Peruski, A. H. A. P. J., L. F, Immunological Methods for Detection and Identification of Infectious Disease and Biological Warfare Agents. Clinical and vaccine immunology, 2003. 10(4): p. 506-513.
  • [98] Ivnitski, D., O’Neil, D. J., Gattuso, A., Schlicht, R., Calidonna, M., and Fisher, R., Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. BioTechniques, 2003. 35(4): p. 862-869.
  • [99] Dorsch, M. R., Rapid detection of bacterial antibiotic resistance: Preliminary evaluation of PCR assays targeting Tetracycline resistance genes. Human protection and performance division, 2007.
  • [100] Saikaly, P. E., Barlaz, M. A. and de los Reyes, F. L., Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate. Applied and environmental microbiology, 2007. 73(20): p. 6557-6565.
  • [101] Thévenot, D. R., Toth, K., Durst, R. A. and Wilson, G. S., Electrochemical biosensors: Recommended definitions and classifications (Technical Report). Pure and applied chemistry, 1999. 71(12): p. 2333-2348.
  • [102] Shah, J. A. W., E., Electrochemical Biosensors for Detection of Biological Warfare Agents. Electroanalysis, 2002. 15(3): p. 157-167.
  • [103] Karyakin, A. A., Bobrova, O. A., Lukachova, L. V. and Karyakina, E. E., Potentiometric biosensors based on polyaniline semiconductor films. Sensors and actuators B, 1996. 33: p. 34-38.
  • [104] Koncki, R., Radomska, A. and Glab, S., Potentiometric determination of dialysate urea nitrogen. Talanta, 2000. 52: p. 13-17.
  • [105] Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T. and O’Kennedy, R., Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology 2003. 32 p. 3-13.
  • [106] Silva, N., Matos, M. J., Karmali, A. and Rocha, M. M., An Electrochemical Biosensor for Acrylamide Determination: Merits and Limitations. Portugaliae Electrochimica Acta, 2011. 29(5): p. 361-373.
  • [107] Pfeifer, P.a.B., W. , Direct potentiometric immunoelectrodes. I. Immobilization of proteins on titanium wire electrodes Fresenius Journal of Analytical Chemistry, 1992. 343: p. 541-549
  • [108] Bergveld, P., Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years. Sensors and actuators B, 2003. 88: p. 1-20.
  • [109] Lazcka, O., Javier Del Campo, F., Xavier Munoz, F., Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics, 2007. 22 p. 1205-1217.
  • [110] Lisdat, F. A. S., D., The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry, 2008. 391: p. 1555–1567.
  • [111] Wang, Y., Ye, Z. and Ying, Y., New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors, 2012. 12 (3449-3471).
  • [112] Park, J. Y. A. P., S. M., DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool Sensors, 2009. 9(12): p. 9513-9532.
  • [113] Mirsky, V. M., Riepl, M., Wolfbeis, O. S., Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997. 12(9): p. 977-989.
  • [114] Palchetti, I.a.M., M., Amperometric Biosensor for Pathogenic Bacteria Detection. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, 2008: p. 299-312.
  • [115] Skladal, P., Symerska, Y., Pohanka, M., Safar, B., and Macela, A., Electrochemical immunosensor for detection of Francisella tularensis. Defense against Bioterror: Detection Technologies, Implementation Strategies and Commercial Opportunities, 2005: p. 221-232.
  • [116] Rao, V. K., Sharma, M. K., Goel, A. K., Singh, L. and Sekhar, K., Amperometric Immunosensor for the Detection of Vibrio cholerae O1 Using Disposable Screen-
  • [117] printed Electrodes. Analytical sciences: The Japan society for analytical chemistry, 2006. 22(9): p. 1207-1211.
  • [118] Peckham, G. D., Hew, B. E., Waller, D. F., Holdaway, C. and Jen, M., Amperometric Detection of Bacillus anthracis Spores: A Portable, Low-Cost Approach to the ELISA. International Journal of Electrochemistry, 2013. (Article ID 803485): p. 6 pages.
  • [119] Campuzano, S., de Ávila, B. E.-F., Yuste, J., Pedrero, M., García, J. L., García, P., García, E. and Pingarrón, J. M., Disposable amperometric magnetoimmunosensors for the specific detection of Streptococcus pneumoniae. Biosensors and Bioelectronics, 2010. 26(4): p. 1225-1230.
  • [120] Salam, F. A.T., I. E., Detection of Salmonella typhimurium using an electrochemical immunosensor. Biosensors and Bioelectronics, 2009. 24(8): p. 2630-2636.
  • [121] Esteban-Fernández de Ávila, B., Pedrero, M., Campuzano, S., Escamilla-Gómez, V. and Pingarrón, J. M., Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Analytical and Bioanalytical Chemistry, 2012. 403(4): p. 917-925.
  • [122] Mittelmann, A. S., Ron, E. Z. and Rishpon, J., Amperometric Quantification of Total Coliforms and Specific Detection of Escherichia coli. Analytical Chemistry, 2002. 74(4): p. 903-907.
  • [123] Gooding, J.J., Lai, L. M. H., and Goon, I. Y., Nanostructured electrodes with unique properties for biological and other applications. Advances in electrochemical science and engineering, 2009. 11 Chemically modified electrodes.
  • [124] Schroper, F., Bruggemann, D., Mourzina, Y., Wolfrum, B., Offenhausser, A., Mayer, D., Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization. Electrochimica acta, 2008. 53: p. 6265 - 6272.
  • [125] Walcarius, A., and Kuhn, A., Ordered porous thin films in electrochemical analysis. Trends in analytical chemistry, 2008. 27(7): p. 593-603.
  • [126] Soreta, T. R., Henry, O. Y. F, and O'Sullivan, C. K., Electrode surface nanostructuring via nanoparticle electronucleation for signal enhancement in electrochemical genosensors. Biosensors and Bioelectronics, 2011. 26: p. 3962-3966.
  • [127] Li, F., Han, X., and Liu, S., Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosensors and Bioelectronics, 2011. 26: p. 2619-2625.
  • [128] Dhand, C., Das, M., Datta, M., Malhotra, B. D., Recent advances in polyaniline biosensors. Biosensors and Bioelectronics, 2011. 26: p. 2811-2821.
  • [129] Zeng, G., Li, Z., Tang, L., Wu, M., Lei, X., Liu, Y., Liu, C., Pang, Y, and Zhang, Y., Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene. Electrochimica acta, 2010. doi:10.1016/j.electacta.2011.03.035.
  • [130] Cook, I., Sheel D. W., and Hodgkinson, J. L., Surface nanostructuring via combined all atmospheric pressure processing, coating, patterning and ecthing. Surface and coatings technology, 2011. doi:10.1016/j.surfcoat.2011.03.059.
  • [131] Sugimura, H., Takai, O., and Nakagiri, N., Scanning probe lithography for electrode surface modification. Journal of Electroanalytical Chemistry, 1999. 473: p. 230-234.
  • [132] Li, Y., Cai, W., and Duan, G., Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater., 2008. 20: p. 615-624.
  • [133] Ben-Ali, S., Cook, D. A., Bartlett, P. N., and Kuhn, A., Bioelectrocatalysis with modified higly ordered macroporous electrodes. Journal of electroanalytical chemistry, 2005. 579, 181-187.
  • [134] Han. J. H., B., H., Park, S., Chung, T. D., Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor. Electrochimica acta, 2006. 52: p. 1788-1791.
  • [135] Foyet, A., Hauser, A., and Schafer, W., Template electrochemical deposition and characterization of zinc-nickel alloy nanomaterial. Journal of electroanalytical chemistry, 2007. 604: p. 137-143.
  • [136] Guo, R., Zhang, B., and Liu, X., Electrodeposition of nanostructured Pt films from lyotropic liquid crystalline phases on alpha-Al2O3 supported dense Pd membranes. Applied surface science, 2007. 254: p. 538 543.
  • [137] Xu, Q., Zhu, J. L., and Hu, X. Y., Ordered mesoporous polyaniline filmm as a new matrix for enzyme immobilization and biosensor construction. Analytica Chimica Acta, 2007. 597: p. 151-156.
  • [138] Li, J., and Lin, X. Q., Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbonelectrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Analytica Chimica Acta, 2007. 596: p. 222-230.
  • [139] Rapecki, T., Donten, M., and Stojek, Z., Electrodeposition of polypyrrole–Au nanoparticles composite from one solution containing gold salt and monomer. Electrochemistry Communications, 2010. 12 p. 624-627.
  • [140] Henry, O. Y. F., Gutierrrez Pereza, J., Sanchez, J. L. A. and O’Sullivan, C. K., Electrochemcial characterisation and hybridisation efficiency of co-assembled monolayers of PEGylated ssDNA and mercaptohexanol on planar gold electrodes. Biosensors and Bioelectronics, 2010. 25(5): p. 978-983.
  • [141] Henry, O., Y. F., Perez, J. G., Sanchez, J. L. A., and O'Sullivan, C. K, Electrochemcial characterisation and hybridisation efficiency of co-assembled monolayers of PEGylated ssDNA and mercaptohexanol on planar gold electrodes Biosensors and Bioelectronics, 2010. 25(5): p. 978-983.
  • [142] H. Nasef, V. B., V. C. Ozalp, C. K. O'Sullivan, Analytical and Bioanalytical Chemistry, 2010. 396: p. 2565.
  • [143] Beni, V., Gelaw, T. K., and O'Sullivan, C. K., Study of the combination of the deposition/stripping of sacrificial metal nano-structures and alkanethiol as a route for genosensor surface preparation. Electrochemistry Communications, 2011. 13: p. 325-327.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.