Preferences help
enabled [disable] Abstract
Number of results
2018 | 100 | 135-153
Article title

The isolation, purification and analysis of the melanin pigment extracted from Armillaria mellea rhizomorphs

Title variants
Languages of publication
The aim of present study was isolation and characteriation of raw and purified melanin from Armillaria mellea rhizomorphs. Native melanin was isolated from the rhizomorphs of A. mellea by alkaline extraction. Obtained pigment was purifed by acid hydrolysis and washed by organic solvents. Chemical tests, FT-IR and Raman spectroscopy analysis were conducted to determine the melanin nature of the isolated pigment. UV-Vis, transmittance and colour properties were evaluated. Antioxidant activity was determined using ABTS and antibacterial activity by a well diffusion method. The results of the study demonstrated that melanins isolated from A. mellea rhizomorphs had antioxidant, light barrier and antibacterial properties. A purified form of melanin offered better light properties and higher antioxidant activity than the raw form. Both melanins showed antimicrobial activity, raw melanin form had broader activity compared to the pure form. This study revealed that A. mellea rhizomorphs may be considered as a promising source of natural melanin. Isolated pigments presented all the physical and chemical properties common to natural and synthetic melanins. Raw and purified melanins showed differences in chemical composition, antioxidant activity and light barrier properties. Results of this study suggest that, melanins from A. mellea could be applied in the food, cosmetics and pharmaceutical industries.
Physical description
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Janickiego Str., Szczecin 71-270, Poland
  • [1] Asef M.R., Mohammadi Goltapeh E., Alizadeh A. 2003. Identification of Armillaria species in Iran. Fungal Diversity 14: 51-60.
  • [2] Gao J-M., Yang X., Wang C-Y., Liu J-K. 2001. Armillaramide, a new sphingolipid from the fungus Armillaria mellea. Fitoterapia 72: 858-864. DOI: 10.1016/S0367-326X(01)00319-7
  • [3] Mwenje E., Wingfield B.D., Coetzee M.P.A. Wingfield M.J. 2003. Molecular characterisation of Armillaria species from Zimbabwe. Mycological Research 107(3): 291-296. DOI: 10.1017/S0953756203007408
  • [4] Pareek M., Cole L., Ashford A.E. 2001. Variations in structure of aerial and sumberged rhizomorphs of Armillaria luteobubalina indicate that they may be organs of absorption. Mycological Research 105(11): 1377-1387. DOI: 10.1017/S0953756201004622
  • [5] Mihail J.D., Bruhn J.N. 2007. Dynamics of bioluminescence by Armillaria gallica, A. mellea and A. tabescens. Mycologia 99(3): 341-350.
  • [6] Morrison D.J. 2004. Rhizomorph growth habit, saprophytic ability and virulence of 15 Armillaria species. Forest Pathology 34: 15-26. DOI: 10.1046/j.1439-0329.2003.00345.x
  • [7] Lushaj B.M., Woodward S., Keča N., Intini M. 2010. Distribution, ecology and host range of Armillaria species in Albania. Forest Pathology 40: 485-499. DOI: 10.1111/j.1439-0329.2009.00624.x
  • [8] Guillaumin J.J., Mohammed C., Anselmi N., Courtecuisse R., Gregory S.C., Holdenrieder O., Intini M., Lung B., Marxmüller H., Morrison D., Risbeth J., Termorshuizen A.J., Tirró A., van Dam B. 1993. Geographical distribution and ecology of the Armillaria species in western Europe. Forest Pathology 23: 321-341. DOI:
  • [9] Mihail J.D., Bruhn J.N. 2005. Foraging behaviour of Armillaria rhizomorph systems. Mycological Research 109(11): 1195-1207. DOI: 10.1017/S0953756205003606
  • [10] Puzyr A.P., Medvedeva S.E., Bondar V.S. 2017. Biochemical changes causes lack of bioluminescence in fruiting bodies of Armillaria. Mycosphere 8(1): 9-17. DOI: 10.5943/mycosphere/8/1/2
  • [11] Rigling D., Günthardt-Goerg M.S., Blauenstein H., Frey B. 2006. Accumulation of heavy metals into Armillaria rhizomorphs from contaminated soil. Forest Snow and Landscape Research 80(2): 213-220.
  • [12] Yafetto L., Davis D.J., Money N.P. 2009. Biomechanic of invasive growth by Armillaria rhizomorphs. Fungal Genetics and Biology 46: 688-694. DOI: 10.1016/j.fgb.2009.04.005
  • [13] Li Z., Wang Y., Jiang B., Li W., Zheng L., Yang X., Bao Y., Sun L., Huang Y., Li Y. 2016. Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. Journal of Ethnopharmacology 184: 119-127. DOI: 10.1016/j.jep.2016.02.044
  • [14] Putrov K.V., Petushkov V.N., Rodionova N.S., Gitelson J.I. 2017. Why Does the Bioluminescent Fungus Armillaria mellea Have Liminous Mycelium but Nonluminous Fruiting Body? Doklady Biochemistry and Biophysics 474: 217-219. DOI: 10.1134/S1607672917030176
  • [15] Lung M-Y., Chang Y-C. 2011. In vitro antioxidant properties of polysaccharides from Armillaria mellea in batch fermentation. African Journal of Biotechnology 10(36): 7048-7057.
  • [16] Zavastin D.E., Mircea C., Aprotosoaie A.C., Gherman S., Hancianu M., Mron A. 2015. Armillaria mellea: phenolic content, in vitro antioxidant and antihyperglicemic effects. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi 119(1): 273-280.
  • [17] Muszyńska B., Maślanka A., Ekiert H., Sułkowska-Ziaja K. 2011. Analysis of indole compounds in Armillaria mellea fruiting bodies. Acta Poloniae Pharmaceutica – Drug Research 68(1): 93-97.
  • [18] Chen C-C., Kuo Y-H., Cheng J-J., Sung P-J., Ni C-L., Chen C-C., Shen C-C. 2015. Three new Sesquiterpene Aryl Esters from the Mycelim of Armillaria mella. Molecules 20: 9994-10003. DOI: 10.3390/molecules20069994
  • [19] Gao L.W., Li W.Y., Zhao Y.L., Wang J.W. 2009. The cultivation, bioactive components and pharmacological effects of Armillaria mellea. African Journal of Biotechnology 8(25): 7383-7390.
  • [20] Chen Y-J., Chen C-C., Huang H-L. 2016. Induction of apoptosis by Armillaria mellea constituent armillarikin in human hepatocellular carcinoma. OncoTargets and Therapy 9: 4773-4783. DOI: 10.2147/OTT.S103940
  • [21] Lung M-Y., Chang Y-C. 2011. Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures. International Journal of Molecular Sciences 12: 6367-6384. DOI: 10.3390/ijms12106367
  • [22] Lung M-Y., Huang P-C. 2009. Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures. Letters in Applied Microbiology 50: 198-204. DOI: 10.1111/j.1472-765X.2009.02777.x
  • [23] Sun X., Wu B., Zhou L., Liu Z., Dong Y., Yang A. 2017. Isolation and characterization of melanin pigment from yesso scallop Patinopecten yessoensis. Journal of Ocean University China 16(2): 279-284. DOI: 10.1007/s11802-017-3162-6
  • [24] Kannan P., Ganjewala D. 2009. Preliminary characterization of melanin isolated form frutis and seeds of Nyctanthes arbor-tristis. Journal of Scientific Research 1(3): 655-661.
  • [25] Łopusiewicz Ł. 2018. Antioxidant, antibacterial properties and the light barrier assessment of of raw and purified melanins isolated from Citrullus lanatus (watermelon) seeds. Herba Polonica 64(2).
  • [26] Kurian N.K., Nair H.P., Bhat S.G. 2014. Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise #305). International Journal of Current Biotechnology 2(5): 6-11.
  • [27] Łopusiewicz Ł. 2018. Isolation, characterisation and biological activity of melanin from Exidia nigricans. World Scientific News 91, 111–129.
  • [28] Łopusiewicz Ł. 2018. Scleroderma citrinum melanin: isolation, purification, spectroscopic studies with characterization of antioxidant, antibacterial and light barrier properties. World Scientific News 94(2), 114-129.
  • [29] Solano F. Melanins: skin pigments and much more – types, structural models, biological functions, and formation routes. New Journal of Science 2014.
  • [30] Łopusiewicz Ł., Lisiecki S. 2016. „Czarne złoto” – melaniny w życiu człowieka [In Polish]. Kosmos 65(4): 621-629.
  • [31] Łopusiewicz Ł., Jędra F., Mizielińska M. 2018. New Poly(lactic acid) Active Packaging Composite Films Incorporated with Fungal Melanin. Polymers 10(4): 386. DOI: 10.3390/polym10040386
  • [32] Łopusiewicz Ł., Lisiecki S., Mizielińska M. 2017. Aktywność przeciwutleniające folii PE i PLA modyfikowanych powłokami zawierającymi melaniny grzybowe [In Polish]. Opakowanie 3: 81-85.
  • [33] Łopusiewicz Ł., Lisiecki S., Mizielińska M. 2017. Właściwości przeciwutleniające i optyczne folii BOPP i PET modyfikowanych powłokami zawierającymi melaniny grzybowe [In Polish]. Opakowanie 7: 48-55.
  • [34] Selvakumar P., Rajasekar S., Periasamy K., Raaman N. 2008. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World Journal of Microbiology and Biotechnology 24: 2125-2131. DOI: 10.1007/s11274-008-9718-2
  • [35] Zhan F., He Y., Zu Y., Li T., Zhao Z. 2011. Characterisation of melanin isolated form a dark septate endpophyte (DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology 27: 2483-2489. DOI: 10.1007/s11274-011-0712-8
  • [36] Różanowska M., Sarna T., Land E.J., Truscott TG. 1999. Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidizing radicals. Free Radical Biology and Medicine 26: 518-525. DOI: 10.1016/S0891-5849(98)00234-2
  • [37] Cuevas-Juárez E., Yuriar-Arredondo K.Y., Pío-León J.F., Montes-Avila J., López-Angulo G., Díaz-Camacho S.P., Delgado-Vargas F. 2014. Antioxidant and α-glucosidase inhibitory properties of soluble melanins from the fruits of Vitex mollis Kunth, Randia echinocarpa Sessé et Mociño and Crescentia alata Kunth. Journal of Functional Foods 9: 78-88. DOI: 10.1016/j.jff.2014.04.016
  • [38] Hung Y-C., Sava V., Makan S., Chen T-HJ., Hong M-Y., Huang GS. 2002. Antioxidant activity of melanins derived from tea: comparison between different oxidative states. Food Chemistry 78: 233-240. DOI: 10.1016/S0308-8146(01)00403-4
  • [39] Helan Soundra Rani M., Ramesh T., Subramanian J., Kalaiselvam M. 2013. Production and Characterization of Melanin Pigment from Halophilic Black Yeast Hortaea werneckii. International Journal of Pharma Research & Review 2(8): 9-17.
  • [40] Laxmi M., Kurian N.K., Smitha S., Bhat S.G. 2016. Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens. Indian Journal of Biotechnology 15(3): 392-399.
  • [41] Xu C., Li J., Yang L., Shi F., Yang L., Ye M. 2017. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 73: 1445-1451. DOI: 10.1016/j.foodcont.2016.10.048
  • [42] Correa N., Covarrubias C., Rodas P.I., Hermosilla G., Olate V.R., Valdés C., Meyer W., Magne F., Tapia C.V. 2017. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies. Frontiers in Microbiology 8: 1-13. DOI: 10.3389/fmicb.2017.01292
  • [43] Friedman M. 2016. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5(4): 80. DOI: 10.3390/foods5040080
  • [44] Bin L., Wei L., Xiaohong C., Mei J., Mingsheng D. 2012. In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Annals of Microbiology 62(4): 1523-1530. DOI: 10.1007/s13213-011-0406-3
  • [45] Zhu H., He C-C., Chu Q-H. 2011. Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Letters in Apllied Microbiology 52: 269-274. DOI: 10.1111/j.1472-765X.2010.02993.x
  • [46] Valeru S.P., Rompikuntal P.K., Ishikawa T., Vaitkevicius K., Sjöling A., Dolganov N., Zhu J., Schoolnik G., Wai S.N. 2009. Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infection and Immunity 77: 935–942. DOI: 10.1128/IAI.00929-08
  • [47] Worrall J.J., Chet I., Hüttermann A. 1986. Association of Rhizomorph Formation With Laccase Activity in Armillaria spp. Journal of General Microbiology 132: 2527-2533. DOI: 10.1099/00221287-132-9-2527
  • [48] Kwaśna H., Kotyńska U., Łakomy P., Mallet K. 2001. Stimulation of Armillaria rhizomorph growth by oak root fungi. Acta Mycologica 36(2): 257-272.
  • [49] Tudor D., Robinson S.C., Cooper P.A. 2012. The influence of moisture content variation on fungal pigment formation in spalted wood. AMB Express 2: 69. DOI: 10.1186/2191-0855-2-69
  • [50] Toledo A.V., Franco M.E.E., Lopez S.M.Y., Troncozo M.I., Saparrat M.C.N., Balatti P.A. 2017. Melanins in fungi: Types, localization and putative biological roles. Physiological and Molecular Plant Pathology 99: 2-6. DOI: 10.1016/j.pmpp.2017.04.004
  • [51] Fogarty R.V., Tobin J.N. 1996. Fungal melanins and their interactions with metals. Enzyme and Microbial Technology 19(4): 311-317. DOI: 10.1016/0141-0229(96)00002-6
  • [52] Eisenman H.C., Casadevall A. 2012. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology 93(3): 931-940. DOI: 10.1007/s00253-011-3777-2
  • [53] Rizzo D.M., Blanchette R.A., Palmer M.A. 1992. Biosorption of metal compounds by Armillaria rhizomorphs. Canadian Journal of Botany 70(8): 1515-1520. DOI: 10.1139/b92-190
  • [54] Pombeiro-Sponchiado S.R, Sousa G.S., Andrade J.C.R., Lisboa H.F., Gonçalves R.C.R. 2017. Production of Melanin Pigment by Fungi and its Biotechnological Applications. DOI: 10.5772/67375
  • [55] Onofri S. 1999. Antarctic Microfungi. In: Seckbach J. (eds) Enigmatic Microorganisms and Life in Extreme Environments. Cellular Origin and Life in Extreme Habitats, Vol. 1. Springer, Dordrecht. DOI: 10.1007/978-94-011-4838-2_26
  • [56] Łukasz Łopusiewicz, Małgorzata Mizielińska, Antifungal activity of PLA foils covered with ethylocelulose containing essential oils. World News of Natural Sciences 12 (2017) 27-32
  • [57] Michał Jarosz, Patrycja Sumińska, Urszula Kowalska, Małgorzata Mizielińska, Antibacterial activity of covered paper after storage. World News of Natural Sciences 17 (2018) 141-146
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.