Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 23 | 103 - 113

Article title

DEVELOPMENT OF MUCOADHESIVE CHITOSAN-BASED DRUG DELIVERY SYSTEM

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan is a highly versatile biopolymer characterised by low toxicity, biocompatibility, and slow but complete biodegradation in the human body, possessing multiple reactive groups. One of the most well-known properties of positively charged chitosan derivatives is their ability to bind mucous membranes. The aim of this work was the analysis of mucoadhesion of unmodified 20 kDa chitosan and its hydrophobic (HC) and hydrophobic quaternised (QHC) derivatives in vitro and ex vivo. Unmodified chitosan formed large aggregates in vitro in keratinocyte and colon cell cultures and ex vivo in murine small intestine and muscle explants. At the same time, HC and especially QHC bound cells in vitro and ex vivo in a fine dotted manner, as evidenced by confocal microscopy. Such a pattern of hydrophobic derivatives distribution provides the possibility to develop mucoadhesive drug delivery systems with increased local drug release and improved chitosan biodegradation.

Contributors

  • Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences
  • Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences
  • Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

References

  • [1] Schulz JD, Gauthier MA, Leroux J-C; (2015) Improving oral drug bioavailability with polycations? Eur J Pharm Biopharm, 97, 427–437. DOI:10.1016/j.ejpb.2015.04.025.
  • [2] Ali A, Ahmed S; (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109, 273–286. DOI:10.1016/j.ijbiomac.2017.12.078.
  • [3] Kumar A, Vimal A, Kumar A; (2016) Why Chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 91, 615–622. DOI::10.1016/j.ijbiomac.2016.05.054.
  • [4] Sadeghi AMM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, et al.; (2008). Permeation enhancer effect of chitosan and chitosan derivatives: Comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm 70, 270–278. DOI10.1016/j.ejpb.2008.03.004.
  • [5] García MC, Aldana AA, Tártara LI, Alovero F, Strumia MC, Manzo RH, et al.; (2017). Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr Polym 175, 75–86. DOI:10.1016/j.carbpol.2017.07.053.
  • [6] Patel S, Srivastava S, Singh MR, Singh D; (2018) Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol 107, 1888–1897. DOI:10.1016/j.ijbiomac.2017.10.056.
  • [7] Patrulea V, Ostafe V, Borchard G, Jordan O; (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97, 417–426. DOI:10.1016/j.ejpb.2015.08.004.
  • [8] Ueno H; (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52, 105–115.
  • [9] Kuen C, Fakurazi S, Othman S, Masarudin M; (2017) Increased Loading, Efficacy and Sustained Release of Silibinin, a Poorly Soluble Drug Using Hydrophobically-Modified Chitosan Nanoparticles for Enhanced Delivery of Anticancer Drug Delivery Systems. Nanomaterials 7, 379. DOI:10.3390/nano7110379.
  • [10] Sousa IP De, Moser T, Steiner C, Fichtl B, Bernkop-schnürch A; (2016) Insulin loaded mucus permeating nanoparticles : Addressing the surface characteristics as feature to improve mucus permeation. Int J Pharm 500, 236–244. DOI:10.1016/j.ijpharm.2016.01.022.
  • [11] Raskin MM, Schlachet I, Sosnik A; (2016) Mucoadhesive nanogels by ionotropic crosslinking of chitosan-g-oligo(NiPAam) polymeric micelles as novel drug nanocarriers. Nanomedicine (Lond) 11, 217–233. DOI:10.2217/nnm.15.191.
  • [12] Zubareva AA, Shcherbinina TS, Varlamov VP, Svirshchevskaya E V; (2015) Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles. Nanoscale 7, 7942–7952. DOI:10.1039/c5nr00327j.
  • [13] Shelma R, Sharma CP; (2010) Acyl modified chitosan derivatives for oral delivery of insulin and curcumin. J Mater Sci Mater Med 21,2133–2140. DOI:10.1007/s10856-010-4073-x.
  • [14] Zubareva AA, Shagdarova BT, Varlamov VP, Svirshchevskaya E V; (2016) Cell binding and penetration of quaternized chitosan derivatives. Prog Chem Appl Chitin Its Deriv 21, 217–223. DOIi:10.15259/PCACD.21.23.
  • [15] Stepnova EA, Tikhonov VE, Babushkina TA, Klimova TP, Vorontsov E V, Babak VG, et al.; (2007) New approach to the quaternization of chitosan and its amphiphilic derivatives 43, 2414–2421. DOI:10.1016/j.eurpolymj.2007.02.028.
  • [16] Bayat A, Larijani B, Ahmadian S; (2008) Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. 4, 115–120. DOI:10.1016/j.nano.2008.01.003.
  • [17] Xia Q, Xi JÆ, Chen G, Sheng ÆQ; (2009) Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties.1603–1610. DOI:10.1007/s10856-009-3729-x.
  • [18] Xu Q, Wu Y, Li M, Gao H; (2009) Quaternized chitosan ( QCS )/ poly ( aspartic acid ) nanoparticles as a protein drug-delivery system. Carbohydr Res 344, 908–914. DOI:10.1016/j.carres.2009.02.018.
  • [19] Wu J, Wei W, Wang L, Su Z, Ma G; (2008) Preparation of uniform-sized pH-sensitive quaternized chitosan microsphere by combining membrane emulsification technique and thermal-gelation method. 63, 164–175. DOI:10.1016/j.colsurfb.2007.11.021.
  • [20] De Oliveira Pedro R, Schmitt CC, Neumann MG; (2016) Syntheses and characterization of amphiphilic quaternary ammonium chitosan derivatives. Carbohydr Polym 147, 97–103. DOI:10.1016/j.carbpol.2016.03.083.
  • [21] Konovalova M V, Kurek D V, Litvinets SG, Martinson EA, Varlamov VP; (2016) Preparation and characterization of cryogels based on pectin and chitosan. Prog Chem Appl Chitin Its Deriv XXI, 114–121 DOI:10.15259/PCACD.21.12.
  • [22] Masuko T, Iwasaki N, Yamane S, Funakoshi T, Majima T, Minami A, et al.; (2005) Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering. Biomaterials 26, 5339–5347. DOI:10.1016/j.biomaterials.2005.01.062.
  • [23] Dünnhaupt S, Barthelmes J, Hombach J, Sakloetsakun D, Arkhipova V, Bernkop-Schnürch A.; (2011) Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa. Int J Pharm 408, 191–199. DOI:10.1016/j.ijpharm.2011.01.060.
  • [24] Martins DB, Nasário; FD, Silva-Gonçalves LC, de Oliveira Tiera VA, Arcisio-Miranda M, Tiera MJ, et al.; (2018) Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes. Carbohydr Polym 181, 1213–1223. DOI:10.1016/j.carbpol.2017.12.011.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-7cfa678c-cb4f-4b90-8fc0-f6bbbb092e34
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.