PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 16 | 3 | 146–151
Article title

Rola badania PET/CT w diagnostyce otępień

Content
Title variants
EN
The role of PET/CT in the diagnostics of dementia
Languages of publication
PL
Abstracts
EN
A growing number of people with dementia translates into the necessity to use modern imaging methods. Function tests assessing glucose metabolism in the brain, such as 18F-FDG PET/CT, are conducted in the case of clinical doubts and facilitate the differential diagnostics of dementia. In the case of the Alzheimer’s disease, glucose metabolism disorders become visible, above all, in the area of both the parietotemporal areas, posterior parts of the callosal gyrus, the precuneus as well as medial temporal lobe. In the case of dementia with the Lewy bodies, glucose metabolism disorders relate to the occipital lobes and both the parietotemporal areas. In the case of frontotemporal dementia, lesions are observed, above all, in the frontal lobes and poles of the anterior temporal lobes. On the other hand, in the case of vasogenic dementia, there are numerous, spread deficits visible in collecting a marker within the brain – both the cortex and the subcortical nuclei. Characteristic glucose metabolism disorders are present also in the case of other, less common neurodegenerative diseases, such as corticobasal degeneration and the atrophy of the posterior part of the brain. In the case of corticobasal degeneration, one can observe a decreased collection of 18F-FDG within the sensory-motor cortex, in the subcortical nuclei and the thalamus on the side with the disease, while in the case of atrophy of the posterior part of the brain – within both the parieto-occipital areas. Besides glucose metabolism, it is possible to assess the presence of β amyloid in the brain. It is deemed that a negative result of PET/CT for β amyloid enables to exclude the Alzheimer’s disease as being the cause of dementia. The utilisation of non-invasive PET/CT makes it possible to early diagnose dementia and determine the prognosis.
PL
Rosnąca liczba starszych osób z otępieniem przekłada się na konieczność stosowania nowoczesnych metod obrazowania. Badania czynnościowe oceniające metabolizm glukozy w mózgowiu, takie jak 18F-FDG PET/CT, są przeprowadzane w razie wątpliwości klinicznych i ułatwiają diagnostykę różnicową chorób otępiennych. W przypadku choroby Alzheimera zaburzenia metabolizmu glukozy uwidaczniają się przede wszystkim w obrębie obu okolic skroniowo-ciemieniowych, tylnych części zakrętów obręczy, przedklinka, a także części przyśrodkowych płatów skroniowych. W otępieniu z ciałami Lewy’ego zaburzenia metabolizmu glukozowego dotyczą płatów potylicznych i obu okolic skroniowo-ciemieniowych. W zwyrodnieniu czołowo-skroniowym zmiany obserwuje się przede wszystkim w płatach czołowych i biegunach przednich płatów skroniowych. Z kolei w otępieniu naczyniopochodnym widoczne są liczne, rozsiane ubytki gromadzenia znacznika w obrębie mózgowia – zarówno kory, jak i jąder podkorowych. Charakterystyczne zaburzenia metabolizmu glukozy są obecne również w innych, rzadszych chorobach neurodegeneracyjnych, takich jak zwyrodnienie korowo-podstawne i zanik tylnej części mózgu. W zwyrodnieniu korowo-podstawnym obserwuje się zmniejszone gromadzenie 18F-FDG w obrębie kory czucioworuchowej, w jądrach podkorowych oraz we wzgórzu po zajętej stronie, natomiast w zaniku tylnej części mózgu – w obrębie obu okolic ciemieniowo-potylicznych. Oprócz metabolizmu glukozy można oceniać obecność amyloidu β w mózgowiu. Uważa się, że negatywny wynik badania PET/CT pod kątem amyloidu β pozwala na wykluczenie choroby Alzheimera jako przyczyny zespołu otępiennego. Zastosowanie nieinwazyjnych badań PET/CT umożliwia wczesne postawienie diagnozy zespołu otępiennego i ustalenie rokowania.
Discipline
Publisher

Year
Volume
16
Issue
3
Pages
146–151
Physical description
Contributors
  • Zakład Medycyny Nuklearnej, Warszawski Uniwersytet Medyczny, Warszawa, Polska
References
  • Albert MS, DeKosky ST, Dickson D et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 270–279.
  • Alves J, Soares JM, Sampaio A et al.: Posterior cortical atrophy and Alzheimer’s disease: a meta-analytic review of neuropsychological and brain morphometry studies. Brain Imaging Behav 2013; 7: 353–361.
  • Brown RK, Bohnen NI, Wong KK et al.: Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics 2014; 34: 684–701.
  • Caroli A, Testa C, Geroldi C et al.: Cerebral perfusion correlates of conversion to Alzheimer’s disease in amnestic mild cognitive impairment. J Neurol 2007; 254: 1698–1707.
  • Cerami C, Crespi C, Della Rosa PA et al.: Brain changes within the visuo-spatial attentional network in posterior cortical atrophy. J Alzheimers Dis 2015; 43: 385–395.
  • Chan D, Fox NC, Scahill RI et al.: Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol 2001; 49: 433–442.
  • Choi SR, Golding G, Zhuang Z et al.: Preclinical properties of 18F-AV-45: a PET agent for Aβ plaques in the brain. J Nucl Med 2009; 50: 1887–1894.
  • Gallucci M, Limbucci N, Catalucci A et al.: Neurodegenerative diseases. Radiol Clin North Am 2008; 46: 799–817.
  • Gomperts SN, Locascio JJ, Marquie M et al.: Brain amyloid and cognition in Lewy body diseases. Mov Disord 2012; 27: 965–973.
  • Herholz K, Carter SF, Jones M: Positron emission tomography imaging in dementia. Br J Radiol 2007; 80 Spec No 2: S160–S167.
  • Ishii K, Sasaki M, Yamaji S et al.: Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord 1998; 9: 317–322.
  • Ishii K, Soma T, Kono AK et al.: Comparison of regional brain volume and glucose metabolism between patients with mild dementia withLewy bodies and those with mild Alzheimer’s disease. J Nucl Med 2007; 48: 704–711.
  • Jack CR Jr, Albert MS, Knopman DS et al.: Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 257–262.
  • Jack CR Jr, Wiste HJ, Vemuri P et al.; Alzheimer’s Disease Neuroimaging Initiative: Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 2010; 133: 3336–3348.
  • Jalbert JJ, Daiello LA, Lapane KL: Dementia of the Alzheimer type. Epidemiol Rev 2008; 30: 15–34.
  • Johnson KA, Minoshima S, Bohnen NI et al.; Alzheimer’s Association; Society of Nuclear Medicine and Molecular Imaging; Amyloid Imaging Taskforce: Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement 2013; 9: e1–e16.
  • Josephs KA, Duffy JR, Fossett TR et al.: Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Arch Neurol 2010; 67: 596–605.
  • Kanda T, Ishii K, Uemura T et al.: Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 2008; 35: 2227–2234.
  • Kim EJ, Cho SS, Jeong Y et al.: Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain 2005; 128: 1790–1801.
  • Migliaccio R, Agosta F, Scola E et al.: Ventral and dorsal visual streams in posterior cortical atrophy: a DT MRI study. Neurobiol Aging 2012; 33: 2572–2584.
  • Nobili F, Morbelli S: [18F]FDG-PET as a biomarker for early Alzheimer’s disease. The Open Nuclear Medicine Journal 2010; 2: 46–52.
  • O’Brien JT, Firbank MJ, Davison C et al.: 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med 2014; 55: 1959–1965.
  • Rabinovici GD, Furst AJ, Alkalay A et al.: Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain 2010; 133: 512–528.
  • Ratnavalli E, Brayne C, Dawson K et al.: The prevalence of frontotemporal dementia. Neurology 2002; 58: 1615–1621.
  • Rosso SM, Donker Kaat L, Baks T et al.: Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 2003; 126: 2016–2022.
  • Sakamoto S, Ishii K, Sasaki M et al.: Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J Neurol Sci 2002; 200: 27–32.
  • Sarazin M, de Souza LC, Lehéricy S et al.: Clinical and research diagnostic criteria for Alzheimer’s disease. Neuroimaging Clin N Am 2012; 22: 23–32.
  • Shimada H, Shinotoh H, Hirano S et al.: β-amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord 2013; 28: 169–175.
  • Van Heertum RL, Tikofsky RS: Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med 2003; 33: 77–85.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-7aefb098-de57-46dc-adb7-fa2f3825f78e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.