PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 94 | 2 | 190-216
Article title

Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Quaternionic division by zero is implemented as an algebraic multiplication by infinity performed in a 4D multispatial hyperspace. The operation is shown to be possible when it is executed within abstract multispatial hyperspace comprising several pairs of quasigeometric spaces (or quasispatial structures), which are paired as primary and its dual reciprocal space.
Discipline
Year
Volume
94
Issue
2
Pages
190-216
Physical description
References
  • [1] Czajko J. On Cantorian Spacetime over Number Systems with Division by Zero. Chaos Solit. Fract. 21 (2004) 261-271
  • [2] Ribenboim P. Algebraic numbers. New York: Wiley, 1972, p. 94f.
  • [3] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(2) (2018) 171-197
  • [4] Maor E. e: The story of a number. Princeton, NJ: Princeton Univ. Press, 1998, p. 144f.
  • [5] Nahin P.J. Dr. Euler’s fabulous formula cures many mathematical ills. Princeton, NJ: Princeton Univ. Press, 2006, p. 34.
  • [6] Imaeda K. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time. N. Cim. 50B (1979) 271-293
  • [7] Levi-Civita T. Der absolute Differentialkalkül und seine Anwendungen in Geometrie und Physik. Berlin: Springer, 1929, p. 39.
  • [8] Czajko J. Radial and nonradial effects of radial fields in Frenet frame. Appl. Phys. Res. 3(1) (2011) 2-7
  • [9] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30
  • [10] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54.
  • [11] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
  • [12] Kantor I.L. & Solodovnikov A.F. Hypercomplex numbers. An elementary introduction to algebras. New York: Springer, 1989, p. 22.
  • [13] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235
  • [14] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72
  • [15] Koch H. Algebraic number theory. Berlin: Springer, 1997, p. 137ff
  • [16] Sowerby L. Vector field theory with applications. London: Longman, 1974, p.108f.
  • [17] Witten E. Reflections on the fate of spacetime. Phys. Today April (1996) 24-30
  • [18] Waissmann F. Einführung in das mathematische Denken. Die Begriffsbildung der modernen Mathematik. München: Deutscher Taschenbuch Verlag, 1970, p. 19.
  • [19] Dedron P. & Itard J. Mathematics and mathematicians I. London: Transworld, 1973, p. 27.
  • [20] Macfarlane A. Vector analysis and quaternions. New York: Wiley, 1906, pp. 16, 21.
  • [21] McAulay A. Octonions. A development of Clifford biquaternions. Cambridge: At the Univ. Press, 1898, p. 7.
  • [22] Pettofrezzo A.J. Vectors and their applications. Englewood Cliffs, NJ: Prentice-Hall, 1966, p. 70.
  • [23] Kline M. Mathematical thought from ancient to modern times II. New York: Oxford Univ. Press, 1990, p. 784.
  • [24] Herranz F.J. & Santander M. The family of quaternionic quasi-unitary Lie algebras and their central extensions. J. Phys. A: Math. Gen. 32 (1999) 4495-4507.
  • [25] Crowe M.J. (1967) A history of vector analysis. The evolution of the idea of a vectorial system. Notre Dame: Univ. of Notre Dame, p. 186f.
  • [26] Tait P.G. An elementary treatise on quaternions. Cambridge: Univ. Press, p. XIV ff.
  • [27] Newton I. The mathematical works of Isaac Newton I. Assembled by Whiteside D.T. New York: Johnson Reprint Corp., 1964, p. 30.
  • [28] Newton I. The mathematical works of Isaac Newton II. Assembled by Whiteside D.T. New York: Johnson Reprint Corp., 1967, p. 49.
  • [29] Cotroneo A.P. Characterizations of real linear algebras. Washington, DC: NASA TN D-3863, 1967, p. 1.
  • [30] Yaglom I.M. Felix Klein and Sophus Lie. Boston: Birkhäuser, 1988, p.86.
  • [31] Room T.G. & Kirkpatrick P.B. Miniquaternion geometry. Cambridge: At The Univ. Press, 1971, p. 1.
  • [32] Sohon F.W. Rotation and perversion groups in Euclidean space of four dimensions. J. Math. Phys. 9 (1929-30) 194, see p. 197.
  • [33] Altmann S.L. Rotations, quaternions, and double groups. Oxford: Clarendon Press, 1986, p.206.
  • [34] Joly C.J. A manual of quaternions. London: Macmillan, 1905, p. 20.
  • [35] Klein F. Elementarmathematik vom höheren Standpunkte. Berlin, 1924, p. 72f.
  • [36] Klein F. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. I. New York: Chelsea Publishing, 1950, p. 185f.
  • [37] Oproiu V. Pontrjagin forms of quaternion manifolds. Atti Ac. Lincei Rend. 76 (1984) 19.
  • [38] Stringham I. On the geometry of planes in a parabolic space of four dimensions. Trans. Am. Math. Soc. 2 (1901) 183, see p. 185.
  • [39] Rutledge W.A. Quaternions and Hadamard matrices. Proc. AMS 3 (1952) 625.
  • [40] Latimer C.G. Quaternion algebras. Duke Math. J. 15 (1948) 357
  • [41] Kuns M.-A. et al. The book of involutions. AMS, 1998, p.87, p. 25.
  • [42] Shimura G. Arithmetic and analytic theories of quadratic forms and Clifford groups. Providence, RI: AMS, 2004, p. 14.
  • [43] Beck H. Eine Cremonasche Geometrie. J. reine angew. Math. 175 (1936) 129.
  • [44] Cartan E. Sur les groupes linéaires quaternioniens. [pp.251-263 in E. Cartan. Oeuvres complètes 2. Paris : CNRS, 1984].
  • [45] Hamilton W.R. Lectures on quaternions: Containing a systematic statement. Dublin, 1853, p. 33f.
  • [46] Hamilton W.R. Elements of quaternions I. New York: Chelsea Publishing, 1969, p. 110.
  • [47] Clifford W.K. Preliminary sketch of biquaternions. [pp.181-200 in: Clifford W.K. Mathematical papers. Edited by Tucker, R. New York: Chelsea, 1968, see p. 183].
  • [48] Bermbach W. Ueber n-mal nacheinender angewandte Substitutionen, durch welche drei Quadrate in sich selbst transformiert werden. Bonn, 1887, p. 6.
  • [49] Rao K.N.S. The rotation and Lorentz groups and their representations for physicists. New York: Wiley, 1988, p.146.
  • [50] Blaschke W. Anwendung dualer Quaternionen auf Kinematik. [pp.131-141 in: Burau W. et al. (Eds.) Wilhelm Blaschke gesammelte Werke II. Essen: Thales Verlag, 1985].
  • [51] Budinich P. & Trautman A. An introduction to spinorial chessboard. J. Geom. Phys. 4 (1987) 361, see p. 365.
  • [52] Rodman L. Topics in quaternion linear algebra. Princeton, NJ: Princeton Univ. Press, 2014, p.9ff.
  • [53] Fueter R. Die Funktionentheorie der Differentialgleichungen u=0 und u=0 mit vier reellen Variablen. Com. Math. Helv. 35(8) (1934) 307.
  • [54] Fueter R. Über vierfachperiodische Funktionen. Mh. Math. Phys. 48 (1939) 161.
  • [55] Kravchenko V.V. & Shapiro M.V. On the generalized system of Cauchy-Riemann equations with a quaternion parameter. Rus. Acad. Sci. Dokl. Math. 47 (1993) 315-319.
  • [56] Fueter R. Analytische Funktionen einer Quaternionen-variablen. Comment. Math. 4 (1932) 9-20.
  • [57] Fueter R. & Bareiss E. Funktionentheorie im Hyperkomplexen. Manuscript reproduced by Argonne National Lab. with permission of the University of Zurich, Switzerland, p. 179.
  • [58] Nef W. Über die singulären Gebilde der regulären Funktionen einer Quaternionenvariablen. Zürich, 1942, p. 144.
  • [59] Dienst K.J. Bewegungsgruppen projektiv-symmetrischer Ebenen von Char. 2. J. reine angew. Math. 250 (1971) 130
  • [60] Hurwitz A. Vorlesungen über der Quaternionen. Berlin: Springer, 1919, p. 6.
  • [61] Temple G. 100 years of mathematics. London: Duckworth, 1981, p. 51.
  • [62] Brookes M. The matrix reference manual. http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/special.html
  • [63] Blaschke W. Kinematik und Quaternionen. Berlin: VEB Deutscher Verlag der Wissenschaften, 1960, p.8ff.
  • [64] Bachmann F. Die Bewegungsgruppe einer ebenen Cayleyschen Geometrie. J. reine angew. Math. 181 (1940) 242.
  • [65] Rodriguez W.A., Jr. & De Olivera E.C. Clifford valued differential forms and some issues in gravitation, electromagnetism and “unified“ theories. Int. J. Mod. Phys. D13 (2004) 1879-1915.
  • [66] Thirulogasanthar K., Honnouvo G. & Krzyżak A. Multi-matrix vector coherent states. Ann. Phys. 314 (2004) 119-144.
  • [67] Forder H.G. The foundations of Euclidean geometry. New York: Dover, 1958, p. 323.
  • [68] Du Val P. Homographies, quaternions and rotations. Oxford: Clarendon, 1964, p. 35ff.
  • [69] Wood R.M.W. Quaternionic eigenvalues. Bull. Lond. Math. Soc. 17 (1985) 137-138.
  • [70] Hathaway A.S. A primer on quaternions. New York, 1896, p. 36.
  • [71] Kuipers J.B. Quaternions and rotation sequences. Princeton, NJ: Princeton Univ. Press, p. 132ff.
  • [72] Hardy A.S. Elements of quaternions. Boston, 1881, p. 59.
  • [73] Coolidge J.L. A history of geometrical methods. Oxford: Clarendon, 1940, p. 259.
  • [74] Forder H.H. The calculus of extension. New York: Chelsea, 1960, p. 23.
  • [75] Xu D. et al. Quaternion calculus: GHR derivatives. arXiv:1409.8168v1[Math-GM] 25Sep2014
  • [76] Eberly S. Quaternion algebra and calculus. 1998 https://www.geometrictools.com/Documentation/Quaternions.pdf
  • [77] Rastall P. Quaternions in relativity. Rev. Mod. Phys. 36 b(1964) 820-832.
  • [78] Gough W. Quaternions and spherical harmonics. Eur. J. Phys. 5 (1984) 163-171.
  • [79] Monozón J.J. & Sánchez-Soto L.L. Fresnel coefficients as hyperbolic rotations. Eur. J. Phys. 23 (2002) 1-9.
  • [80] Fischer O.F. Hamilton’s quaternions and Minkowski’s potentials. Phil. Mag. 27 (1939) 375-385.
  • [81] Silberstein L. Quaternionic form of relativity. Phil. Mag. 23 (1912) 790-809, see p. 793.
  • [82] Gough W. The analysis of spin and spin-orbit coupling in quantum and classical physics by quaternions. Eur. J. Phys. 7 (1986) 35-42.
  • [83] Fueter R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen. Comm. Math. Helv. 8 (1935-1936) 371-378, http://e-periodica.ch
  • [84] Makai I. Cauchy-Gleichungen für Quaternionenfunktionen. Publ. Math. (Debrecen) 12 (1965) 253.
  • [85] Deavours C.A. The quaternion calculus. Am. Math. Mon. 80 (1973) 995, see p. 997.
  • [86] Cohn P.M. Further algebra and applications. London: Springer, 2003, p. 202.
  • [87] Waterhouse W.C. Nonassociative quaternion algebras. Alg. Groups Geom. 4 (1987) 365, see p. 369.
  • [88] Miller G.A. On the quaternion group. [pp. 320-325 in: Miller G.A. The collected works of George Abraham Miller I. Urbana, IL: Univ. of Illinois Press, 1935, see p. 324].
  • [89] Combebiac T. Sur un système numérique complexe représentant le groupe des transformations conformes de l’espace. Bull. Soc. Math. France 30 (1902) 1, see p. 8.
  • [90] Conway J.H. & Smith D.A. (2003). On quaternions and octonions: Their geometry, arithmetic, and symmetry. Wellesley, MA: A.K. Peters, p. 78.
  • [91] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
  • [92] Malone J.J. Generalized quaternion groups and distributively generated near-rings. Proc. Edinb. Math. Soc. 18 (1973) 235, see p. 238.
  • [93] Rédei L. Algebra. I. Oxford: Pergamon Press, 1967, p. 298.
  • [94] Ivanova T.A. Self-dual Yang-Mills connections and generalized Nahm equations. [pp.57-70 in: Fomenko A.T., Manturov O.V. & Trofimov V.V. (Eds.) Tensor and vector analysis. Geometry, mechanics and physics. Amsterdam: Gordon and Breach, 1998, p. 61ff].
  • [95] Cayley A. On Jacobi’s elliptic functions, in reply to the Rev. B. Brown; and on quaternions. [pp.127-127 in: Cayley A. The collected mathematical papers of Arthur Cayley. Cambridge: At the Univ. Press, 1889].
  • [96] Cayley A. On the 8-square imaginaries. [p.368-371 in: Cayley A. The collected mathematical papers. Vol.11. Cambridge: At The Univ. Press, 1886].
  • [97] Cartan E. La théorie des groupes et la géométrie. [pp.841-66 in E. Cartan. Oeuvres complètes. T.2 pt.1. Paris : Gauthier-Villars, 1952].
  • [98] Rosen N. Note on the general Lorentz transformation. J. Math. Phys. 9 (1929-30) 181.
  • [99] Conte E. New Pauli matrices in biquaternion quantum mechanics: A case of explicit and concrete realization of a hidden variable. Phys. Essays 8(4) (1995) 605-614.
  • [100] Graves R.P. Life of Sir William Rowan Hamilton. III. New York: Arno Press, 1975, p. 607.
  • [101] Toth G. Glimpses of algebra and geometry. New York: Springer, 2002, p. 309.
  • [102] Kantor I.L. & Solodovnikov A.S. Hypercomplex numbers. New York: Springer, 1989, p. 31.
  • [103] De Leo S. & Rodrigues W.A., Jr. Quaternionic electron theory: Geometry, algebra, and Dirac spinors. Int. J. Theor. Phys. 37(7) (1998) 1707-1720, see p. 1709.
  • [104] Baker A.L. Quaternions as the result of algebraic operations. New York: Van Nostrand, 1911, p. 33.
  • [105] Van Der Waerden B.L. Hamiltons Entdeckung der Qauternionen. Göttingen: Vanderhoeck & Rupprecht, 1973, p. 4.
  • [106] Dray T. & Manogue C.A. The geometry of the octonions. Singapore: World Scientific, 2015, pp. 61,177.
  • [107] Ebbinghaus H.-D. et al. Numbers. New York: Springer, 1991, pp. 194ff,197ff.
  • [108] Eberlein W.F. The geometric theory of quaternions. Am. Math. Mon. 70(10) (1963) 952-954.
  • [109] Pickert G. & Steiner H.-G. Complex numbers and quaternions. [pp. 456-482 in: Behnke H. et al. (Eds.) Fundamentals of mathematics I: The real number system and algebra. Cambridge, MA: The MIT Press, 1974, see p. 475].
  • [110] Hestenes D. Space-Time Algebra. New York: Springer, 2015, p. 2ff.
  • [111] Gough W. Mixing scalars and vectors – an elegant view of physics. Eur. J. Phys. 11 (1990) 326-333.
  • [112] Souček J. Quaternion quantum mechanics as a true 3+1-dimensional theory of tachyons. J. Phys. A: Math. Gen. 14 (1981) 1621-1640.
  • [113] Öztürk U. et al. Dual quaternion frames. Commun. Fac. Sci. Univ. Ankara Series A1 vol. 59(2) (2010) 41-50 http://dergiler.ankara.edu.tr/dergiler/29/1620/17417.pdf
  • [114] Hanson A.J. Quaternion Frenet frames: Making optimal tubes and ribbons from curves https://pdfs.semanticscholar.org/df0d/0791172c4b619adf2f01b2defc73afdb005d.pdf
  • [115] Hanson A.J. & Ma H. Quaternion frame approach to streamline visualization. IEEE Trans. Vis. Comp. Graph. 1(2) (1995) 164-174.
  • [116] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
  • [117] Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39 http://cscanada.net/index.php/sms/article/view/j.sms.1923845220130702.2469/5279
  • [118] Czajko J. With equalized mass, its density of matter can affect radial gravitational interactions too. Int. Lett. Chem. Phys. Astron. 54 (2015) 112-121
  • [119] Lemmon W.W. Quaternion invariants of the Minkowksi space. New Orleans, LA: Tulane Univ. Techn. Report, 1955, p. 2ff.
  • [120] Girard P.R. Quaternions, Clifford algebras and relativistic physics. Basel: Birkhäuser, 2007, p. 69.
  • [121] McAulay A. Utility of quaternions in physics. London: Macmillan, 1893, p. 22.
  • [122] Tai C.-T. Generalized vector and dyadic analysis. Applied mathematics in field theory. Piscataway, NJ: IEEE Press, 1997, pp. 24,29,53,59ff,74f.
  • [123] Lohr E. Vektor- und Dyadenrechnung für Physiker und Techniker. Berlin: Walter de Gruyter, 1939, p.105f.
  • [124] Hurwitz A. Vorlesungen über die Zahlentheorie der Quaternionen. Berlin: Springer, 1919, p. 5f.
  • [125] Morais J.P., Georgiev S. & Spröβig W. Real quaternionic calculus handbook. Basel: Springer, 2014, p. 5f.
  • [126] Mal’tsev A.I. Algebraic systems. Moscow: Nauka Publ., 1970, p. 124 [in Russian].
  • [127] Cartan É. The theory of spinors. New York: Dover, 1981, p. 7.
  • [128] Chandrasekhar H. & Nagaraj M. Discrete quaternion Fourier transform signal processing systems. [pp.95-112 in: Dass B.K. (Ed.) Discrete mathematics and allied topics. New Delhi: Taru Publications, 2002, see p. 97f].
  • [129] Queen N.M. Vector analysis. New York: McGraw-Hill, 1967, p. 64.
  • [130] Eliezer C.J. Concise vector analysis. Mineola, NY: Dover, p. 96.
  • [131] Lindgren B.W. Vector calculus. New York: Macmillan, 1964, p. 160.
  • [132] Peirce J.M. On certain complete systems of quaternionic expressions, and on the removal of metric limitations from the calculus of quaternions. Trans. AMS 5 (1904) 411.
  • [133] Michiwaki H., Saitoh S. & Yamada M. Reality of the division by zero z/0=0. Int. J. Appl. Phys. Math. 6(1) (2016) 1-8 http://www.ijapm.org/show-63-504-1.html
  • [134] Michiwaki H, Okumura H. & Saitoh S. Division by Zero z/0 = 0 in Euclidean Spaces. Int. J. Math. Computation, 28(1) (2017) 1-16
  • [135] Okumura H., Saitoh S. & Matsuura T. Relations of 0 and ∞. JTSS J. Tech. Soc. Sci. 1(1) (2017) 70-77, see p. 74 on http://www.e-jikei.org/Journals/JTSS/issue/archives/vol01_no01/10_A020/Camera%20ready%20manuscript_JTSS_A020.pdf
  • [136] Matsuura T. & Saitoh S. Matrices and division by zero z/0=0. Adv. Lin. Alg. Matrix Theor. 6 (2016) 51-58, http://dx.doi.org/10.4236/alamt.2016.62007
  • [137] Morley F. & Morley F.V. Inversive geometry. New York: Chelsea, 1954, pp. 39,44.
  • [138] Hille E. Analytic Function Theory I. New York: Chelsea Publishing, 1973, p. 47.
  • [139] Dieudonné J. Treatise on analysis III. New York: Academic Press, 1972, pp. 132ff,141.
  • [140] Häfli H. Quaternionengeometrie und das Abbildungsproblem der regulären Quaternionenfunktionen. Comment. Math. Helv. 17 (1944-45) 135, see p. 137.
  • [141] Hylleraas E.A. Mathematical and theoretical physics I. New York: Wiley, 1970, p. 255.
  • [142] Chisholm J.S.R. Vectors in three-dimensional space. Cambridge: Cambridge Univ. Press, 1978, p. 246.
  • [143] Weisstein E.W. Vector Laplacian. http://mathworld.wolfram.com/VectorLaplacian.html and references therein.
  • [144] Feynman R.P., Morinigo F.B. & Wagner W.G. Feynman lectures on gravitation. Reading, MA: Addison-Wesley, 1995, pp. 156,200.
  • [145] God (The Inspirer). The Bible: Ephesians 6: 12 https://www.biblegateway.com/passage/?search=Ephesians+6%3A12&version=KJV
  • [146] Veith W.J. Total onslaught. Video #229: God’s guiding gift. https://amazingdiscoveries.tv/media/142/229-gods-guiding-gift/
  • [147] White E.G. Ye shall receive power. Section 10-17: Self subdued. Short audio http://ellenwhiteaudio.org/ye-shall-receive-power/
  • [148] White E.G. Counsels on health (White estate). Audio part 13-03. See minute ~6:02 on http://ellenwhiteaudio.org/counsels-on-health-white-estate/ . Other resources (including many translations into other languages) are on http://www.whiteestate.org/
  • [149] God (The Inspirer). The Bible: John 14: 6 https://www.biblegateway.com/passage/?search=john14:6&version=KJV
  • [150] Veith W.J. In the stream of time: Twisting the Ten Commandments. Video #253 https://amazingdiscoveries.tv/media/2494/253-twisting-the-ten-commandments/ see ~53: 16
  • [151] Veith W.J. Total onslaught. Video #207: Seven churches. See minutes ~43: 10, ~59: 25 on https://amazingdiscoveries.tv/media/119/207-seven-churches/
  • [152] God (The Inspirer). The Bible: Hebrews 6: 18 https://www.biblegateway.com/quicksearch/?quicksearch="god+cannot+lie"&qs_version=ERV
  • [153] God (The Inspirer). The Bible: Genesis 18: 14 https://www.biblegateway.com/passage/?search=gen18%3A14&version=KJV
  • [154] Veith W.J. In the stream of time. Video #256. See minute ~31: 30 on https://amazingdiscoveries.tv/media/2497/256-the-coming-kingdom/
  • [155] Veith W.J. Religious controversy. Video #502 https://amazingdiscoveries.tv/media/84/502-religious-controversy/
  • [156] God (The Inspirer). The Bible: Revelation 17: 1,15,16, 19: 2 https://www.biblegateway.com/passage/?search=rev17:1,17:15,17:16,19:2&version=KJV
  • [157] Veith W.J. Total onslaught: Changing the Word. Video #214 https://amazingdiscoveries.tv/media/126/214-changing-the-word/
  • [158] Veith W.J. Total onslaught. Audio #213B: Battle of the Bibles. https://amazingdiscoveries.tv/media/125/213-battle-of-the-bibles/
  • [159] Veith W.J. Total onslaught. Video #211: The secret behind secret societies. https://amazingdiscoveries.tv/media/123/211-the-secret-behind-secret-societies/ see ~21: 20
  • [160] Veith W.J. Total onslaught. Video #215: Revolutions, tyrants & wars. See minute ~6: 00 on https://amazingdiscoveries.tv/media/128/215-revolutions-tyrants-and-wars/
  • [161] Moon P. & Spencer D.E. Field theory handbook including coordinate systems, differential equations and their solutions. Berlin: Springer, 1971, p. 136f
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-790b44cb-6a6d-453c-85ef-839b30ef3a4b
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.