Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 11-22

Article title



Title variants

Languages of publication



An increase in the number and volume of surgical interventions leads to an increase in the frequency of postoperative adhesions. The development of the adhesion process in the abdominal cavity causes pain, a decrease in the quality of life of patients, a violation of the reproductive function of women as well as acute adhesion intestinal obstruction. Recently, polymer biomaterials, including those based on chitosan, have been widely used for the prevention of adhesions. Due to their biocompatibility and biodegradation ability, they do not require repeated operations to extract the material. It is believed that these materials act as barriers, physically separating the damaged surfaces. The molecular mechanism of their action is still poorly understood. In this review, the main mechanisms of adhesion formation, as well as ways to prevent them with the help of materials based on chitosan and its derivatives, are discussed






Physical description


  • Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
  • I.M. Sechenov First Moscow State Medical University
  • Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences


  • Liu J, Willför S, Xu C.; (2015) A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydrates Diet. Fibre. 5, 31–61. DOI:10.1016/j.bcdf.2014.12.001.
  • Hellebrekers B.W., Trimbos-Kemper G.C., van Blitterswijk C., Bakkum E., Trimbos J.B., Emeis J., Kooistra T.; (2000) Use of fibrinolytic agents in the prevention of postoperative adhesion formation. Fertil. Steril. 74, 203–212. DOI:10.1093/humrep/15.6.1358.
  • Hong G.-S., Schwandt T., Stein K., Schneiker B., Kummer M. P., Heneka M. T., Kitamura K., Kalff J.C., Wehner S.; (2015) Effects of macrophage-dependent peroxisome proliferator-activated receptor γ signalling on adhesion formation after abdominal surgery in an experimental model. Br. J. Surg. 102, 1506–1516. DOI:10.1002/bjs.9907.
  • Fometescu S.G., Costache M., Coveney A., Oprescu S.M., Serban D., Savlovschi C.; (2013) Peritoneal fibrinolytic activity and adhesiogenesis, Chir. 108, 331–340.
  • Ярмолинская М., Молотков А., Денисова В.; (2012) Матриксные металлопротеиназы и ингибиторы : классификация , механизм действия. Журнал акушерства и женских болезней. LXI, 113–125.
  • Lelongt B., Bengatta S., Delauche M., Lund L.R., Werb Z., Ronco P.M.; (2001) Matrix Metalloproteinase 9 Protects Mice from Anti–Glomerular Basement Membrane Nephritis through Its Fibrinolytic Activity. J. Exp. Med. 193, 793–802. DOI:10.1084/jem.193.7.793.
  • Rout U.K., Saed G.M., Diamond M.P.; (2005) Expression pattern and regulation of genes differ between fibroblasts of adhesion and normal human peritoneum. Reprod. Biol. Endocrinol. 3, 1. DOI:10.1186/1477-7827-3-1.
  • Christodoulidis G., Tsilioni I., Spyridakis M.-E., Kiropoulos T., Oikonomidi S., Koukoulis G., Tepetes K.; (2013) Matrix Metaloproteinase-2 and -9 Serum Levels as Potential Markers of Intraperitoneal Adhesions. J. Investig. Surg. 26, 134–140. DOI:10.3109/08941939.2012.730599.
  • Cheong Y.C., Laird S. M., Li T.C., Shelton J.B., Ledger W.L., Cooke I.D.; (2001) Peritoneal healing and adhesion formation/reformation. Hum. Reprod. Update. 7, 556–566. DOI:10.1093/humupd/7.6.556.
  • Chegini N., Kotseos K., Zhao Y., Ma C., McLean F., Diamond M.P., Holmdahl L., Burns J.; (2001) Expression of matrix metalloproteinase (MMP-1) and tissue inhibitor of MMP in serosal tissue of intraperitoneal organs and adhesions. Fertil. Steril. 76, 1212–1219. DOI:10.1016/S0015-0282(01)02875-8.
  • Liu X., Wei Y., Bai X., Li M., Li H., Wang L., Zhang S., Li X., Zhao T., Liu Y., Geng R., Cui H., Chen H., Xu R., Liu H., Zhang Y., Yang B.; (2020) Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1. Acta Pharm. Sin. B. 10, 812–824. DOI:10.1016/j.apsb.2020.02.003.
  • Arung W., Meurisse M., Detry O.; (2011) Pathophysiology and prevention of postoperative peritoneal adhesion. World J. Gastroenterol. 17, 4545–4553. DOI:10.3748/wjg.v17.i41.4545.
  • Braun K.M., Diamond M.P.; (2014) The biology of adhesion formation in the peritoneal cavity. Semin. Pediatr. Surg. 23, 336–343. DOI:10.1053/j.sempedsurg.2014.06.004.
  • Chegini N.; (2008) TGF-β system: The principal profibrotic mediator of peritoneal adhesion formation. Semin. Reprod. Med. 26, 298–312. DOI:10.1055/s-0028-1082388.
  • Saed G.M., Diamond M.P.; (2002) Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-β1 in human peritoneal fibroblasts. Fertil. Steril. 78, 144–147. DOI:10.1016/S0015-0282(02)03146-1.
  • Wiseman D., Lyachovetsky Y., Keidan I., Trout J.R., Nur I.; (2004) The effect of tranexamic acid in fibrin sealant on adhesion formation in the rat. J. Biomed. Mater. Res. Part B Appl. Biomater. 68, 222–230. DOI:10.1016/0002-9378(91)90326-M.
  • Kaidi A., Gurchumelidze T., Nazzal M., Figert P., Vanterpool C., Silva Y.; (1995) Tumor necrosis factor-alpha: a marker for peritoneal adhesion formation. J. Surg. Res. 58, 516–8. DOI:10.1006/jsre.1995.1081.
  • Holschneider C.H., Cristoforoni P.M., Ghosh K., Punyasavatsut M., Abed E., Montz F.J.; (1997) Endogenous versus exogenous IL-10 in postoperative intraperitoneal adhesion formation in a murine model. J. Surg. Res. 70, 138–43. DOI:10.1006/jsre.1997.5124.
  • Wang G., Wu K., Li W., Zhao E., Shi L., Wang J., Shuai X., Cai K., Lu X., Tao K., Wang G.; (2014) Role of IL-17 and TGF-β in peritoneal adhesion formation after surgical trauma. Wound Repair Regen. 22, 631–639. DOI:10.1111/wrr.12203.
  • Rodrigues-Díez R., Aroeira L.S., Orejudo M., Bajo M.-A., Heffernan J. J., Rodrigues-Díez R.R., Rayego-Mateos S., Ortiz A., Gonzalez-Mateo G., López-Cabrera M., Selgas R., Egido J., Ruiz-Ortega M.; (2014) IL-17A is a novel player in dialysisinduced peritoneal damage. Kidney Int. 86, 303–15. DOI:10.1038/ki.2014.33.
  • Haney A.F.; (2000) Identification of macrophages at the site of peritoneal injury: Evidence supporting a direct role for peritoneal macrophages in healing injured peritoneum. Fertil. Steril. 73, 988–995. DOI:10.1016/S0015-0282(00)00490-8.
  • Saed G.M., Diamond M.P.; (2004) Molecular characterization of postoperative adhesions: the adhesion phenotype. J. Am. Assoc. Gynecol. Laparosc. 11, 307–14.
  • Hoshino A., Kawamura Y.I., Yasuhara M., Toyama-Sorimachi N., Yamamoto K., Matsukawa A., a Lira S., Dohi T.; (2007) Inhibition of CCL1-CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J. Immunol. 178, 5296–304. DOI:10.1016/S0090-3671(08)79025-6.
  • Cahill R.A., Redmond H.P.; (2008) Cytokine orchestration in post-operative peritoneal adhesion formation. World J. Gastroenterol. 14, 4861–4866. DOI:10.3748/wjg.14.4861.
  • Maciver A.H., McCall M., James Shapiro A.M.; (2011) Intra-abdominal adhesions: Cellular mechanisms and strategies for prevention. Int. J. Surg. 9, 589–594. DOI:10.1016/j.ijsu.2011.08.008.
  • Langer G.J., Liebman J.C., Monk S.M., Pelletier P.K.; (1995) Mast Cell Mediators and Peritoneal Aadhesion Formation in the rat. J. Surg. Res. 59, 344–348.
  • Wiseman D.M.; (2000) Adhesion Prevention: Past the Future. In: Perit. Surg., Springer New York, New York, 401–417. DOI:10.1007/978-1-4612-1194-5_35.
  • Grainger D.A., Meyer W.R., DeCherney A.H., Diamond M. P.; (1991) The use of hyaluronic acid polymers to reduce postoperative adhesions. J. Gynecol. Surg. 7, 97–101.
  • Liu Y., Li H., Shu X.Z., Gray S.D., Prestwich G.D.; (2005) Crosslinked hyaluronan hydrogels containing mitomycin C reduce postoperative abdominal adhesions. Fertil. Steril. 83, 1275–1283. DOI:10.1016/j.fertnstert.2004.09.038.
  • Trew G.; (2006) Postoperative adhesions and their prevention. Rev. Gynaecol. Perinat. Pract. 6, 47–56. DOI:10.1016/j.rigapp.2006.02.001.
  • DiZerega G.S.; (2000) Use of Adhesion Prevention Barriers in Pelvic Reconstructive and Gynecologic Surgery, in: Perit. Surg., Springer New York, New York, 379–399. DOI:10.1007/978-1-4612-1194-5_34.
  • Cheung J. P. Y., Tsang H. H. L., Cheung J. J. C., Yu H. H. Y., Leung G. K. K., Law W. L.; (2009) Adjuvant therapy for the reduction of postoperative intra-abdominal adhesion formation. Asian J. Surg. 32, 180–186. DOI:10.1016/S1015-9584(09)60392-4.
  • Chou T.C., Fu E., Wu C.J., Yeh J.H.; (2003) Chitosan enhances platelet adhesion and aggregation. Biochem. Biophys. Res. Commun. 302, 480–483. DOI:10.1016/S0006-291X(03)00173-6.
  • Patrulea V., Ostafe V., Borchard G., Jordan O.; (2015) Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm. 97, 417–426. DOI:10.1016/j.ejpb.2015.08.004.
  • Chatelet C., Damour O., Domard A.; (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 22, 261–268. DOI:10.1016/S0142-9612(00)00183-6.
  • Lin L.-X., Yuan F., Zhang H.-H., Liao N.-N., Luo J.-W., Sun Y.-L.; (2017) Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model. PLoS One. 12. e0172088. DOI:10.1371/journal.pone.0172088.
  • Yeo Y., Burdick J.A., Highley C.B., Marini R., Langer R., Kohane D.S.; (2006) Peritoneal application of chitosan and UV-cross-linkable chitosan. J. Biomed. Mater. Res. Part A. 78A, 668–675. DOI:10.1002/jbm.a.30740.
  • Jingcheng W., Lianqi Y., Yu S., Daxin W., Shanhe D., Tangyun Y., Jiaxiang G., Baichuan J., Xinmin F., Hansheng H., Qiang W., Bangliang Y., Guohua L.; (2012) A Comparative Study of the Preventive Effects of Mitomycin C and Chitosan on Intraarticular Adhesion after Knee Surgery in Rabbits. Cell Biochem. Biophys. 62, 101–105. DOI:10.1007/s12013-011-9266-5.
  • Keskin F., Esen H.; (2010) Comparison of the Effects of an Adhesion Barrier and Chitin on Experimental Epidural Fibrosis Deneysel Epidural Fibroziste Adezyon. Turk. Neurosurg. 20, 457–463.
  • Chen Q., Lu H., Yang H.; (2015) Chitosan prevents adhesion during rabbit fexor tendon repair via the sirtuin 1 signaling pathway. Mol. Med. Rep. 12, 4598–4603. DOI:10.3892/mmr.2015.4007.
  • Higham P.A., Posey-Dowty J.D.; (1992) Use of derivatives of chitin soluble in aqueous solutions for preventing adhesions, USA Patent #5093319.
  • Kennedy R., Costain D. J., Mealister V. C., Lee T. D. G., Scotia N.; (1996) Prevention of experimental postoperative peritoneal adhesions by N, O-carboxymethyl chitosan. Surgery. 120, 866–870.
  • Costain D. J., Kennedy R., Ciona C., McAlister V.C., Lee T.D.G.; (1997) Prevention of postsurgical adhesions with N, O-carboxymethyl chitosan: Examination of the most efficacious preparation and the effect of N,O- carboxymethyl chitosan on postsurgical healing. Surgery. 121, 314–319. DOI:10.1016/S0039-6060(97)90360-3.
  • Krause T.J., Zazanis G., Malatesta P., Solina A.; (2001) Prevention of Pericardial Adhesions with N, O-Carboxymethylchitosan in the Rabbit Model. J. Investig. Surg. 14, 93–97.
  • Zhou J., Liwski R.S., Elson C., Lee T.D.G.; (2008) Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using N, O-carboxymethyl chitosan to block cell adherence. J. Thorac. Cardiovasc. Surg. 135, 777–783. DOI:10.1016/j.jtcvs.2007.09.033.
  • Lopes J.B., Dallan L.A.O., Moreira L.F.P., Campana Filho S.P., Gutierrez P.S., Lisboa L.A.F., De Oliveira S.A., Stolf N.A.G.; (2010) Synergism between keratinocyte growth factor and carboxymethyl chitosan reduces pericardial adhesions. Ann. Thorac. Surg. 90, 566–572. DOI:10.1016/j.athoracsur.2010.03.086.
  • Zheng Z., Zhang W., Sun W., Li X., Duan J., Cui J., Feng Z., Mansour H.M.; (2013) Influence of the carboxymethyl chitosan anti-adhesion solution on the TGF-β1 in a postoperative peritoneal adhesion rat. J. Mater. Sci. Mater. Med. 24, 2549–2559. DOI:10.1007/s10856-013-4981-7.
  • Wang D., Mo J., Pan S., Chen H., Zhen H.; (2010) Prevention of postoperative peritoneal adhesions by O-carboxymethyl chitosan in a rat cecal abrasion model. Clin. Investig. Med. Médecine Clin. Exp. 33, E254-60.
  • Yang Y., Liu X., Li Y., Wang Y., Bao C., Chen Y., Lin Q., Zhu L.; (2017) A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomater. 62, 199–209. DOI:10.1016/J.ACTBIO.2017.08.047.
  • Cheng F., Wu Y., Li H., Yan T., Wei X., Wu G., He J., Huang Y.; (2019) Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr. Polym. 207, 180–190. DOI:10.1016/j.carbpol.2018.10.077.
  • Cai X., Hu S., Yu B., Cai Y., Yang J., Li F., Zheng Y., Shi X.; (2018) Transglutaminasecatalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention. Carbohydr. Polym. 201, 201–210. DOI:10.1016/j.carbpol.2018.08.065.
  • Zhou X., Chen S., Liao G., Shen Z., Zhang Z., Sun L., Yu Y., Hu Q.; (2007) Preventive effect of gelatinizedly-modified chitosan film on peritoneal adhesion of different types. World J. Gastroenterol. 13, 1262–1267.
  • Pascual G., Sotomayor S., Rodríguez M., Bayon Y., Bellón J.M.; (2013) Behaviour of a new composite mesh for the repair of full-thickness abdominal wall defects in a rabbit model. PLoS One. 8, 1–16. DOI:10.1371/journal.pone.0080647.
  • Lin L.X., Luo J.W., Yuan F., Zhang H.H., Ye C.Q., Zhang P., Sun Y.L.; (2017) In situ cross-linking carbodiimide-modified chitosan hydrogel for postoperative adhesion prevention in a rat model. Mater. Sci. Eng. C. 81, 380–385. DOI:10.1016/j.msec.2017.07.024.
  • Lauder C.I.W., Strickland A., Maddern G.J.; (2011) Use of a Modified Chitosan-Dextran Gel to Prevent Peritoneal Adhesions in a Rat Model. J. Surg. Res. 171, 877–882. DOI:10.1016/j.jss.2010.06.028.
  • Lauder C.I.W., Strickland A., Maddern G.J.; (2012) Use of a modified chitosandextran gel to prevent peritoneal adhesions in a porcine hemicolectomy model. J. Surg. Res. 176, 448–454. DOI:10.1016/j.jss.2011.10.029.
  • Medina J.G., Das S.; (2013) Sprayable chitosan/starch-based sealant reduces adhesion formation in a sheep model for Chronic sinusitis. Laryngoscope. 123, 42–47. DOI:10.1002/lary.23583.
  • Paulo N.M., De Brito E Silva M.S., Moraes Â.M., Rodrigues A.P., De Menezes L.B., Miguel M.P., De Lima F.G., Faria A.D.M., Lima L.M.L.; (2009) Use of chitosan membrane associated with polypropylene mesh to prevent peritoneal adhesion in rats. J. Biomed. Mater. Res. - Part B Appl. Biomater. 91, 221–227. DOI:10.1002/jbm.b.31393.
  • Jayanth S.T., Pulimood A., Abraham D., Rajaram A., Paul M.J., Nair A.; (2015) A randomized controlled experimental study comparing chitosan coated polypropylene mesh and ProceedTM mesh for abdominal wall defect closure. Ann. Med. Surg. 4, 388–394. DOI:10.1016/J.AMSU.2015.10.002.
  • Li C., Wang H., Liu H., Yin J., Cui L., Chen Z.; (2014) The prevention effect of poly (l-glutamic acid)/chitosan on spinal epidural fibrosis and peridural adhesion in the post-laminectomy rabbit model. Eur. Spine J. 23, 2423–2431. DOI:10.1007/s00586-014-3438-0.
  • Ko J.E., Ko Y.-G., Il Kim W., Kwon O.K., Kwon O.H.; (2017) Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent. J. Biomed. Mater. Res. Part B Appl. Biomater. 105, 1906–1915. DOI:10.1002/jbm.b.33726.
  • Tian L., Li H., Li Y., Liu K., Sun Y., Cong Z., Luan X., Li Y., Chen J., Wang L., Ren Z., Cong D., Wang H., Pei J.; (2018) A combination of chitosan, cellulose, and seaweed polysaccharide inhibits postoperative intra-abdominal adhesion in rats. J. Pharmacol. Exp. Ther. 364, 399–408. DOI:10.1124/jpet.117.244400.
  • Li X.-D., Xia D.-L., Shen L.-L., He H., Chen C., Wang Y.-F., Chen Y.-P., Guo L.- Y., Gu H.-Y.; (2016) Effect of “phase change” complex on postoperative adhesion prevention. J. Surg. Res. 202, 216–224. DOI:10.1016/j.jss.2015.12.033.

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.