PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 134 | 2 | 198-219
Article title

A Study of Quantum Effects in General Relativity

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present work discusses the conceptual and technical issues encountered in formulating a quantized theory of gravity, via the reconciliation of quantum mechanics and general relativity. Quantum effects arising in a classically defined space-time derived through a semi classical approximation are studied at length and the significance of the particle interpretation in quantum field theory in the origin of such effects is established. The contradicting nature of the quantum effects against classically established principles is studied by considering the Hawking effect in a Schwarzschild black hole space-time. Further, the limits of prominent manifestation of the quantum effects with regards to the black hole mass is calculated taking into consideration the cosmic microwave background and the lifetime of the universe. Quantum effects are established as essential in incorporating thermal physics and black hole mechanics in a consistent formulation. Finally, the validity of the semi classical approximation is studied in terms of Planck scale black holes, transplanckian problem and the information loss paradox and the requirement for a fully quantized theory of gravity is realized.
Discipline
Year
Volume
134
Issue
2
Pages
198-219
Physical description
Contributors
  • Department of Physics, University of Colombo, Colombo 3, Sri Lanka
  • Department of Physics, University of Colombo, Colombo 3, Sri Lanka
References
  • [1] A. Coutant. On the phenomenology of quantum gravity: stability properties of Hawking radiation in the presence of ultraviolet violation of local Lorentz invariance. Ph.D. thesis, Universite Paris, Paris XI, 2012. ffNNT: 2012PA112213. https://tel.archives-ouvertes.fr/tel-00747874/document, arXiv:1405.3466 [hep-th]
  • [2] A. Shomer, A pedagogical explanation for the non-renormalizability of gravity, s.l.: arXiv:0709.3555 [hep-th] 2007.
  • [3] S. W. Hawking, Particle creation by black holes. Comm. Math. Phys. 43(3) (1975) 199-220.
  • [4] J. M. Chaiken, Finite-particle representations and states of the canonical. Annals of Physics 42 (1967) 23–80.
  • [5] W. G. Unruh, Notes on black-hole evaporation. Phys. Rev. D. 14(4) (1970) 870-892.
  • [6] S. Fulling, Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time, Phys. Rev. D. 7(10) (1973) 2850-2862.
  • [7] P. C. W. Davies, Scalar production in Schwarzschild and Rindler metrics, Jour. Phys. A 8(4) (1975) 609-616.
  • [8] M. Blau, Lecture notes on General relativity, University of Bern (2018), http://www.blau. itp.unibe.ch/newlecturesGR.pdf
  • [9] M.Socolovsky, Rindler Space and Unruh Effect, arXiv:1304.2833v2 [gr-qc] (2013).
  • [10] K. Schwarzschild, On the Gravitational Field of a Mass Point According to Einstein's Theory, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. K 1 Vol. 3 (1916) 189-196.
  • [11] D. Hilbert, Die grundlagen der physik (zweite mitteilungen), Nachr. Ges. Wiss. Göttingen, Math. Phys. K l (1917) 53-76.
  • [12] M. D. Kruskal, Maximal Extension of Schwarzschild Metric, Phys. Rev. 119(5) (1960) 1743-1745.
  • [13] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge, Monographs on Mathematical Physics. Cambridge University Press, 1973, 149-156.
  • [14] S. Chandrasekhar, The Maximum Mass of Ideal White Dwarfs, Astrophysical Journal 74 (1931) 81.
  • [15] B. Schutz. A First Course in General Relativity. 2nd Ed. Cambridge University Press, 2009.
  • [16] S. W. Hawking, Gravitational Radiation from Colliding Black Holes, Phys. Rev. Lett. 26(21) (1971) 1944-1346.
  • [17] J. D. Bekenstein, 1973. Black Holes and Entropy. Phys. Rev. D 7(8) (1973) 2333-2346.
  • [18] W. Israel, Third Law of Black-Hole Dynamics: A Formulation and Proof. Phys. Rev. Lett. 57(4) (1986) 397-399.
  • [19] J. D. Bekenstein, Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D 9(12) (1974) 3292-3300.
  • [20] W. G. Unruh, R. M. Wald, Acceleration radiation and the generalized second law of thermodynamics. Phys. Rev. D 25(4) (1984) 942-958.
  • [21] R. C. Tolman, On the weight of heat and thermal equilibrium in general relativity, Phys. Rev. 35(8) (1930) 904-924.
  • [22] D. Mahto, B. K Jha, K. M. Singh, K. Parhi, , 2013. Frequency of Hawking radiation of black holes. International Journal of Astrophysics and Space Science 1(4), pp. 45-51.
  • [23] S. B. Giddings, 2016. Hawking radiation, the Stefan–Boltzmann law, and unitarization, Phys. Lett. B 754 (2016) 39-42.
  • [24] D. Ramit, L. Stefano, P. Daniele, The black hole quantum atmosphere, arXiv:1701.06161v2 [gr-qc] (2017).
  • [25] S. W. Hawking, M. J. Perry, A. Strominger, Soft Hair on Black Holes, arXiv:1601.00921 [hep-th] (2016).
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-7518d208-1090-49db-8b80-1f0cca536175
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.