Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 66 | 2 | 66–73

Article title

Galanina – neuromodulator uczestniczący w utrzymywaniu homeostazy krążeniowej

Content

Title variants

EN
Galanin – a neuromodulator involved in the cardiovascular homeostasis

Languages of publication

PL

Abstracts

PL
Galanina jest 29-aminokwasowym peptydem działającym jako neuromodulator w ośrodkowym i obwodowym układzie nerwowym. Wpływa na wiele czynności ośrodkowego układu nerwowego, włączając regulację ośrodka głodu i sytości, uczenie się i zapamiętywanie, regulację neuroendokrynną i przewodnictwo impulsów z nocyceptorów. W pracy dokonano przeglądu najnowszych doniesień dotyczących ośrodkowego i obwodowego wpływu galaniny na układ krążenia. Omówiono mechanizmy działania galaniny oraz interakcje między galaniną i innymi układami neuronalnymi w regulacji układu krążenia. Przedstawione informacje wskazują, że galanina wraz z innymi neuroprzekaźnikami/neuromodulatorami wpływa na ośrodkową i obwodową regulację układu krążenia. Najnowsze badania sugerują możliwy udział galaniny w aktywacji mechanizmów kompensacyjnych w stanie stresu, w tym podczas zaburzenia homeostazy krążeniowej.
EN
Galanin is a 29 amino acid peptide acting as a neuromodulator in the central and peripheral nervous systems. It infl uences a variety of the central nervous system, functions, including food intake regulation, learning and memory, neuroendocrine control and pain transmission. In the present paper, we review the central and peripheral infl uences of galanin on the cardiovascular system. We discuss mechanisms involved in galanin action as well as interactions between galanin and other neuronal systems in the cardiovascular control. In conclusion, galanin, together with other neurotransmitters/neuromodulators, infl uences the central and peripheral przedzwocardiovascular regulation. Moreover, we suggest its involvement in the activation of compensatory mechanisms in the state of disturbed circulatory homeostasis.

Discipline

Year

Volume

66

Issue

2

Pages

66–73

Physical description

Contributors

  • Katedra i Zakład Podstawowych Nauk Medycznych Wydziału Zdrowia Publicznego
author
  • Katedra i Zakład Podstawowych Nauk Medycznych Wydziału Zdrowia Publicznego
  • II Katedra i Oddział Kliniczny Kardiologii Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach
author
  • Katedra i Zakład Podstawowych Nauk Medycznych Wydziału Zdrowia Publicznego Śląskiego Uniwersytetu Medycznego w Katowicach ul. Piekarska 18 41-902 Bytom tel.: +48 32 397 65 42, fax +48 32 397 65 37

References

  • 1. Evans R.G., Ventura S., Dampney R.A., Ludbrook J. Neural mechanisms in cardiovascular responses to acute central hypovolaemia. Clin. Exp. Pharmacol. Physiol. 2001; 28: 479–487.
  • 2. Jochem J. Ośrodkowa regulacja krążenia we wstrząsie krwotocznym u szczura – rola układu histaminergicznego. Rozprawa habilitacyjna. Ann. Acad. Med. Siles. 2004, Supl. 81.
  • 3. Bertolini A. The opioid/anti-opioid balance in shock: a new target for therapy in resuscitation. Resuscitation 1995; 30: 29–42.
  • 4. Coelho E.F., Ferrari M.F., Maximino J.R., Chadi G., Fior-Chadi D.R. Decreases in the expression of CGRP and galanin mRNA in central and peripheral neurons related to the control of blood pressure following experimental hypertension in rats. Brain Res. Bull. 2004; 64: 59–66.
  • 5. Sweerts B.W., Jarrott B., Lawrence A.J. Expression of preprogalanin mRNA following acute and chronic restraint stress in brains of normotensive and hypertensive rats. Brain Res. Mol. Brain Res. 1999; 69: 113–123.
  • 6. Tatemoto K., Rokacus A., Jornvall H., McDonald T., Mutt V. Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett. 1983; 164: 124–128.
  • 7. Lang R., Gundlach A.L., Kofl er B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Therapeut. 2007; 115: 177–207.
  • 8. Kanazawa T., Iwashita T., Kommareddi P. i wsp. Galanin end galanin receptor type 1 suppress proliferation in squamous carcinoma cells: Activation of the extracellular signal regulated kinase pathway and induction of cyclin-dependent kinase inhibitors. Oncogene 2007; 26: 5762–5771.
  • 9. Burazin T.C., Larm J.A., Ryan M.C., Gundlach A.L. Galanin-R1 and -R2 receptor mRNA expression during the development of rat brain suggests diff erential subtype involvement in synaptic transmission and plasticity. Eur. J. Neurosci. 2000; 12: 2901–2917.
  • 10. Elliott-Hunt C.R., Pope R.J., Vanderplank P., Wynick D. Activation of the galanin receptor 2 (GALR2) protects the hippocampus from neuronal damage. J. Neurochem. 2007; 100: 780–789.
  • 11. Kolakowski L.F. Jr., O’Neill G.P., Howard A.D. i wsp. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J. Neurochem. 1998; 71: 2239–2251.
  • 12. Ignatov A., Hermans-Borgmeyer I., Schaller H.C. Cloning and characterization of a novel G-protein-coupled receptor with homology to galanin receptors. Neuropharmacology 2004; 46: 1114–1120.
  • 13. Smith K.E., Forray C., Walker M.W. i wsp. Cloned human et rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K+ channels. J. Biol. Chem. 1998; 273: 23321–23326.
  • 14. Jacobowitz D.M., Kresse A., Skofi tsch G. Galanin in the brain: chemoarchitectonics and brain cartography – a historical review. Peptides 2004; 25: 433–464.
  • 15. Shen P.J., Larm J.A., Gundlach A.L. Expression and plasticity of galanin systems in cortical neurons, oligodendrocyte progenitors and proliferative zones in normal brain and after spreading depression. Eur. J. Neurosci. 2003; 18: 1362–1376.
  • 16. Meister B., Cortes R., Villar M.J., Schalling M., Hokfelt T. Peptides and transmitter enzymes in hypothalamic magnocellular neurons after administration of hyperosmotic stimuli: comparison between messenger RNA and peptide/protein levels. Cell Tissue Res. 1990; 260: 279–297.
  • 17. Saper C.B. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog. Brain Res. 2006; 153: 243–252.
  • 18. Zorrilla E.P., Brennan M., Sabino V., Lu X., Bartfai T. Galanin type 1 receptor knockout mice show altered responses to high-fat diet and glucose challenge. Physiol. Behav. 2007; 91: 479–485.
  • 19. Brewer A., Langel U., Robinson J.K. Intracerebroventricular administration of galanin decreases free water intake and operant water reinforce effi cacy in waterrestricted rats. Neuropeptides 2005; 39: 117–124.
  • 20. Landry M., Roche D., Vila-Porcile E., Calas A. Eff ects of centrally administered galanin(1-16) on galanin expression in the rat hypothalamus. Peptides 2000; 21: 1725–1733.
  • 21. Tortorella C., Neri G., Nussdorfer G.G. Galanin in the regulation of the hypothalamic- pituitary-adrenal axis. Int. J. Mol. Med. 2007; 19: 639–647.
  • 22. Flatters S.J., Fox A.J., Dickenson A.H. In vivo and in vitro eff ects of peripheral galanin on nociceptive transmission in naive and neuropathic states. Neuroscience 2003; 116: 1005–1012.
  • 23. Harfstrand A., Fuxe K., Melander T., Hokfelt T., Agnati L.F. Evidence for a cardiovascular role of central galanin neurons: focus on interactions with alfa2–adrenergic and neuropeptide Y mechanisms. J. Cardiovascul. Pharmacol. 1987; 10: 199–204.
  • 24. Robinson J.K. Galanin and cognition. Behav. Cong Neurosci. Rev. 2004; 3: 222–242.
  • 25. Holmes F.E., Mahoney S.A., Wynick D. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous after injury. Neuropeptides 2005; 39: 191–199.
  • 26. Hill R.A., Simpson E.R., Boon W.C. Evidence for the existence of an estrogen-responsive sexually dimorphic group of cells in the medial preoptic area of the 129vEv mouse strain. Int. J. Impot. Res. 2008; 20: 96–105.
  • 27. Abbott S.B., Pilowsky P.M. Galanin microinjection into rostral ventrolateral medulla of the rat is hypotensive and attenuates sympathetic chemorefl ex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296: R1019–1026.
  • 28. Narvaez J.A., Diaz Z., Aguirre J.A. i wsp. Intracisternally injected galanin-(1-15) modulates the cardiovascular responses of galanin-(1-29) and the 5-HT1A receptor agonist 8-OH-DPAT. Eur. J. Pharmacol. 1994; 257: 257–265.
  • 29. Diaz Z., Narvaez J.A., Hedlund P.B., Aguirre J.A., Baron S.G., Fuxe K. Centrally infused galanin-(1-15) but not galanin-(1- -29) reduces the baroreceptor refl ex sensitivity in the rat. Brain Res. 1996; 741: 32–37.
  • 30. Diaz-Cabiale Z., Cordon M.P., Covenas R. i wsp. Propranolol blocks the tachycardia induced by galanin(1-15) but not galanin(1-29). Regul. Pept. 2002; 107: 29–36.
  • 31. Unger T., Rohmeiss P., Demmert G., Luft F.C., Ganten D., Lang R.E. Diff erential actions of neuronal and hormonal vasopressin on blood pressure and baroreceptor refl ex sensitivity in rats. J. Cardiovasc. Pharmacol. 1986; 8(Suppl 7): S81–S86.
  • 32. Sun M.K., Guyenet P.G. Eff ects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons in vitro. Brain Res. 1989; 492: 261–270.
  • 33. Malpas S.C., Coote J.H. Role of vasopressin in sympathetic response to paraventricular nucleus stimulation in anesthetized rats. Am. J. Physiol. 1994; 266: R228–R236.
  • 34. Smith P.M., Lowes V.L., Ferguson A.V. Circulating vasopressin infl uences area postrema neurons. Neuroscience 1994; 59: 185–194.
  • 35. Arrang J.M., Gulat-Marnay C., Defon- taine N., Schwartz J.C. Regulation of his- tamine release in rat hypothalamus and hippocampus by presynaptic galanin re- ceptors. Peptides 1991; 12: 1113–1117.
  • 36. Larm J.A., Shen P.J., Gundlach A.L. Dif- ferential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal ra- phe nucleus of rat and mouse: evidence for species-dependent modulation of sero- tonin transmission. Eur. J. Neurosci. 2003; 17: 481–493.
  • 37. Diaz-Cabiale Z., Parrado C., Vela C. i wsp. Intracisternal galanin/angiotensin II interactions in central cardiovascular con- trol. Regul. Pept. 2005; 127: 133–140.
  • 38. Diaz-Cabiale Z., Parrado C., Rivera A. i wsp. Galanin-neuropeptide Y (NPY) inter- actions in central cardiovascular control: in- volvement of the NPY Y1 receptor subtype. Eur. J. Neurosci. 2006; 24: 499–508.
  • 39. Díaz-Cabiale Z., Narváez J.A., Yanaihara N., González-Barón S., Fuxe K. Galanin/al- pha2-receptor interactions in central car- diovascular control. Neuropharmacology 2000; 39: 1377–1385.
  • 40. Díaz-Cabiale Z., Parrado C., Narváez M. The Galanin N-terminal fragment (1- 15) interacts with neuropeptide Y in cen- tral cardiovascular control: Involvement of the NPY Y2 receptor subtype. Regul. Pept. 2010; 163: 130–136.
  • 41. Klenerova V., Flegel M., Skopek P., Sida P., Hynie S. Galanin modulating eff ect on restraint stress-induced short- and long- -term behavioral changes in Wistar rats. Neurosci. Lett., w druku.
  • 42. Picciotto M.R., Brabant C., Einstein E.B., Kamens H.M., Neugebauer N.M. Eff ects of galanin on monoaminergic systems and HPA axis: Potential mechanisms underly- ing the eff ects of galanin on addiction- and stress-related behaviors. Brain Res. 2010; 16; 1314: 206–218.
  • 43. Mitsukawa K, Lu X, Bartfai T. Bidi- rectional regulation of stress responses by galanin in mice: involvement of galanin receptor subtype 1. Neuroscience 2009; 160: 837–846.
  • 44. Kozlovsky N., Matar M.A., Kaplan Z., Zohar J., Cohen H. The role of the galanin- ergic system in modulating stress-related responses in an animal model of posttrau- matic stress disorder. Biol. Psychiatry 2009; 65: 383–391.
  • 45. Kisfalvi I. Jr., Burghardt B., Balint A., Zelles T., Vizi E.S., Varga G. Antisecretory eff ects of galanin and its putative antago- nists M15, M35 and C7 in the rat stomach. J. Physiol. (Paris) 2000; 94: 37–42.
  • 46. Kashimura J., Shimosegawa T., Kikuchi Y. i wsp. Eff ects of galanin on amylase se- cretion from dispersed rat pancreatic acini. Pancreas 1994; 9: 258–262.
  • 47. Lindskog S., Gregersen S., Hermansen K., Ahren B. Eff ect of galaninon proinsulin mRNA and insulin biosynthesis in normal islets. Regul. Pept. 1995; 58: 135–139.
  • 48. Kofl er B., Berger A., Santic R. i wsp. Expression of neuropeptide galanin and galanin receptors in human skin. J. Invest. Dermatol. 2004; 122: 1050–1053.
  • 49. Liu H.X., Hokfelt T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol. Sci. 2002; 23: 468–474.
  • 50. Mahoney S.A., Hosking R., Farrant S. i wsp. The second galanin receptor GALR2 plays a key role in neurite outgrowth from adult sensory neurons. J. Neurosci. 2003; 23: 416–421.
  • 51. Potter E.K., Smith-With M.A. Galanin modulates cholinergic neurotransmission in the heart. Neuropeptides 2005; 39: 345–348.
  • 52. Sarnelli G., Vanden Berghe P., Raey- maekers P., Janssens J., Tack J. Inhibi- tory eff ects of galanin on evoked [Ca+2]i responses in cultured myenteric neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 2004; 286: G1009–G1014.
  • 53. McDonald A.C., Schuijers J.A., Shen P.J., Gundlach A.L., Grills B.L. Expression of galanin and galanin receptor-1 in nor- mal bone and during fracture repair in the rat. Bone 2003; 33: 788–797.
  • 54. Nakayama K., Watanabe N., Yamazawa T., Takeshita N., Tanaka Y., Yanaihara N. Eff ects of porcine galanin on the mesenter- ic microcirculation and arteriolar smooth muscle in the rat. Eur. J. Pharmacol. 1991; 193: 75–80.
  • 55. Dagar S., Onyuksel H., Akhter S., Krish- nads A., Rubinstein I. Human galanin ex- presses amphipathic properties that mod- ulate its vasoreactivity in vivo. Peptides 2003; 24: 1373–1380.
  • 56. Brooke-Smith M.E., Carati C.J., Bhanda- ri M., Toouli J., Saccone G.T. Galanin in the regulation of pancreatic vascular perfusion. Pancreas 2008; 36: 267–273.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-74b14ba8-598d-4501-b6ab-a7c2c997eb4f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.