PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 127 | 1 | 1-55
Article title

Wave-particle duality of a 6D wavicle in two paired 4D dual reciprocal quasispaces of a heterogeneous 8D quasispatial structure

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
According to Louis de Broglie, wave-particle duality can imply presence of a single entity also known as wavicle. Hence, instead of the double solution he proposed to explain the duality, I depict the 6D wavicle in a multispatial mathematical entity represented in two 4D quasigeometric heterogeneous structures comprising two paired 3D dual reciprocal spaces, one of which represents the particle and the other the wave that was supposed to guide the particle in his pilot wave theory. The operational nature of the (2⨯4)D = 8D biquaternionic quasigeometric structure of the wavicle is synthesized from twin operations performed over paired 3D homogeneous dual reciprocal spaces, each of which is immersed in a pair of two 4D asymmetrically overlapping heterogeneous quasigeometric (3+1)D = 4D spatial structures.
Discipline
Year
Volume
127
Issue
1
Pages
1-55
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A & M College, Baton Rouge, LA 70813, USA
References
  • [1] Poincaré H. L’avenir des mathématiques. FB Editions, 1908, p. 8f.
  • [2] Poincaré H. Des fondements de la géométrie. Forgotten Books, 2015, pp. 11f, 20, 60.
  • [3] Hilbert D. Natur und mathematisches Erkennen. Basel: Birkhäuser, 1992, p. 17.
  • [4] Bellone E. A world on paper. Studies on the Second Scientific Revolution. Cambridge, MA: The MIT Press, 1980, p. 29f.
  • [5] Gonseth F. Les entretiens de Zurich sur les fondements et la méthode des sciences mathématiques. Zurich, 1941, p. 59.
  • [6] Krat V.A. (Ed.) Heuristic role of mathematics in physics and cosmology. Leningrad, 1975, [in Russian], p. 31.
  • [7] Hall R.J. A philosophy of geometry. Philos. Math. 2 (1965) 13-31, see p. 23.
  • [8] Hamilton A.G. Logic for mathematicians. Cambridge: Cambridge Univ. Press, 2000, p. 57.
  • [9] Fang J. Mathematical existence. Philos. Math. 11 (1974) 5-8
  • [10] Corry L. Modern algebra and the rise of mathematical structures. Basel: Birkhäuser, 1996, p. 391.
  • [11] MacLane S. Mathematical models of space. Am. Math. Month. 68 (1980) 184-191, see p. 191.
  • [12] [no author was given] Grundlagen der Geometrie und algebraische Methoden. Potsdamer Forschungen, Reihe B, Heft 3, 1974, see p. 39.
  • [13] Šanin N.A. Constructive real numbers and constructive function spaces. Providence, RI: AMS, 1968, pp. 305f, 307.
  • [14] Šurygin V.A. Constructive sets with equality and their mappings. [in: Orevkov V.P. & Šanin N.A. (Eds.) Problems in the constructive mathematics V. Proc. Steklov Inst. Math. 113 (1970) 195].
  • [15] Thom R. To predict is not to explain. Thombooks Press, 2015, p. 85.
  • [16] Shlakhin G.G. Mathematics and objective reality. Rostov: Rostov Univ. Press, 1977 [in Russian], p. 115.
  • [17] Kedrovskii O.I. Methodological problems of development of mathematical knowledge. Kiev, 1977 [in Russian], p. 27.
  • [18] Thom R. in: Tsatsanis S.P. (Ed.). To predict is not to explain. Thombooks Press: 2015, p. 144.
  • [19] Vyal’tsev A.N. Discrete spacetime. Moscow, 1965 [in Russian], p. 131.
  • [20] Panov M.I. Methodological problems of the development and application of mathematics. Moscow, 1985 [in Russian], p. 25.
  • [21] Gott V.S. Philosophical problems of contemporary physics. Moscow, 1972 [in Russian], p. 13f.
  • [22] Kaplansky I. Set theory and metric spaces. Boston: Allyn and Bacon, 1972, p. 123f.
  • [23] McLeod R.J.Y. & Baart M.L. Geometry and interpolation of curves and surfaces. Cambridge: Cambridge Univ. Press, 1998, p. 129ff.
  • [24] Wallach N.R. Harmonic analysis on homogeneous spaces. Mineola, NY: Dover, 2018, p. 22ff.
  • [25] Thom R. A panorama of mathematics (1989). [pp. 101-115 in: Tsatsanis S.P. (Ed.). René Thom creator of catastrophe (‘tipping point’) theory: In praise of mathematics. Thombooks Press, 2017, see pp. 101,115].
  • [26] Grätzer G. Universal algebra. Princeton, NJ: Van Nostrand, 1968, p. 270ff.
  • [27] Björk J.-E. Rings of differential operators. Amsterdam: North-Holland, 1979, p. 92ff.
  • [28] McQuistan R.B. Scalar and vector fields: A physical interpretation. New York: Wiley. 1965, p. 198.
  • [29] Tai C.-T. Generalized vector and dyadic analysis. Applied mathematics in field theory. Piscataway, NJ: IEEE Press, 1997, pp. 65,73ff.
  • [30] Penrose R. The road to reality. A complete guide to the laws of the universe. New York: Alfred A. Knopf, 2005, pp. 189,503.
  • [31] Crowe M.J. A history of vector analysis. The evolution of the idea of a vectorial system. Notre Dame: Univ. of Notre Dame, 1967, p. 186f.
  • [32] Hausdorff F. Set theory. New York: Chelsea Publishing, 1957, p. 332ff.
  • [33] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235
  • [34] Uspensky J.V. Theory of equations. New York: McGraw-Hill, 1948, p. 82ff.
  • [35] Shurman J. Geometry of the quintic. New York: Wiley, 1997, p. 91ff.
  • [36] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72
  • [37] Olver P.J. Classical invariant theory. Cambridge; Cambridge Univ. Press, 1999, p. 234ff.
  • [38] Khovanskii A. Topological Galois theory. Solvability and unsolvability of equations in finite terms. Berlin: Springer, 2014, p. 144ff.
  • [39] Browne J. Grassmann algebra I: Foundations. Exploring extended vector algebra with Mathematica. Eltham, VIC, Australia: Barnard Publishing, 2012, pp. 7, 15, 13ff, 19, 39, 49ff, 93ff, 125ff, 161, 217.
  • [40] Morris D. The naked spinor. A rewrite of Clifford algebra. Port Mulgrave: Abane & Right, 2015, pp. 83,87,175.
  • [41] Chevalley C. Fundamental concepts of algebra. New York: Academic Press, 1956, p. 125ff.
  • [42] Deschamps G.A. & Ziolkowski R.W. Comparison of Clifford and Grassmann algebras in applications to electromagnetics. [pp. 501-515 in: Chisholm J.S.R. & Common A.K. (Eds.) Clifford algebras and their applications in mathematical physics. Dordrecht: Reidel, 1986].
  • [43] MacCamy R.C. & Mizel V.J. Linear analysis and differential equations. London: Macmillan, 1969, p. 195ff.
  • [44] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(2) (2018) 190-216
  • [45] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(2) (2018) 171-197
  • [46] Czajko J. On Cantorian Spacetime over Number Systems with Division by Zero. Chaos Solit. Fract. 21 (2004) 261-271
  • [47] Pedoe D. Geometry. A Comprehensive Course. New York: Dover, 1988, pp. 244,276.
  • [48] Bumcrot R.J. Modern Projective Geometry. New York: Holt, Rinehart and Winston, 1969, p. 75.
  • [49] Verdina J. Projective Geometry and Point Transformations. Boston: Allyn & Bacon, 1971, p. 24ff.
  • [50] Hopkins E.J. & Hails E.J. An Introduction to Plane Projective Geometry. Oxford: At The Clarendon Press, 1953, p. 5.
  • [51] Baer R. Linear algebra and projective geometry. New York: Academic Press, 1952, p. 96.
  • [52] Seidenberg A. Lectures on projective geometry. Princeton, NJ: D. Van Nostrand, 1963, p. 43ff.
  • [53] Blaschke W. Ein Beitrag zur Liniengeometrie. Rend. Circ. Mat. Palermo 33 (1912) 247-253
  • [54] Blaschke W. Über topologische Fragen der Differentialgeometrie. Jhb. Deut. Math.-Ver. 37 (1928) 193-206.
  • [55] Brauer R. A characterization of null systems in projective space. [pp. 645-52 in: Fong P. & Wong W.J. (Eds.) Richard Brauer – Collected papers III. Cambridge, MA: The MIT Press, 1980].
  • [56] Levy H. Projective and related geometries. New York: Macmillan, 1964, p. 108.
  • [57] Griffiths P. & Harris J. Principles of algebraic geometry. New Delhi: Wiley, 2014, p. 705ff
  • [58] Álvarez-Gaumé L. & Zamora F. Duality in quantum field theory (and string theory). [pp. 46-83 in: Panvini R.S. & Weiler T.J. (Eds.) Fundamental particles and interactions. Woodbury, NY: AIP, 1998, see p. 48ff].
  • [59] Saaty T.L. & Bram J. Nonlinear mathematics. New York: Dover, 1964, p. 177.
  • [60] Norio Konno, Localization of an inhomogeneous discrete-time quantum walk on the line, Quantum Information Processing, v. 9 n. 3, p. 405-418, June 2010
  • [61] Lang S. Complex analysis. New York: Springer, 2013, pp. 5,11,76,233.
  • [62] Bouhennache R. Truly hypercomplex numbers: Unification of numbers and vectors. arXiv, 2014, p. 15.
  • [63] Snapper E. The three crises in mathematics: Logicism, Intuitionism, and Formalism. [pp. 183-193 in: Campbell D.M. & Higgins J.C. (Eds.) Mathematics. People – Problems – Results. II. Belmont, CA: Wadsworth, 1984, see p. 192].
  • [64] Irina V.R. & Novikov A.A. In the world of scientific intuition. Intuition and mind. Moscow, 1978, p. 125 [in Russian].
  • [65] Weber A. & Lide D.R., Jr. Molecular spectroscopy. [pp. 1522-1600 in: Lerner R.G. & Trigg G.L. (Eds.) Encyclopedia of physics: Vol. 2: M-Z. Third, completely revised and enlarged edition. Weinheim: Wiley-VCH Verlag, 2005, see pp. 1523,1532].
  • [66] Czajko J. Complex Conjugate Time in Macro Experiments. Chaos Solit. Fract. 13 (2002) 17-23
  • [67] Phillips H.B. Vector analysis. New York: Wiley, 1960, p. 82.
  • [68] Schwartz M., Green S. & Rutledge W.A. Vector analysis with applications to geometry and physics. New York: Harper & Brothers Publishers, 1960, pp. 204,365.
  • [69] Manes E.G. Algebraic theories. New York: Springer, 1976, p. 139.
  • [70] Anderson J. & Austin K. Paradigms of proof. Math. Gaz. 79 (1996) 489-495
  • [71] Hintikka J. & Remes U. The method of analysis. Dordrecht: D. Reidel, 1974, p. 119.
  • [72] Poincaré H. Science and hypothesis. New York: Dover, 1952, p. 50.
  • [73] Greenberg M.J. Euclidean and non-Euclidean geometries. Development and history. New York: Freeman, 1993, p. 293.
  • [74] Mooij J.J.A. La philosophie géométrique de Henri Poincaré. Synthese 16 (1966) 53
  • [75] Proietti M. et al. Experimental rejection of observer-independence in the quantum world. arXiv, 2019, see p. 2
  • [76] Brukner Č. On the quantum measurement. arXiv, 2015.
  • [77] Brukner Č. A no-go theorem for observer-independent facts. arXiv, 2018.
  • [78] Cramer J. & Schütte-Nütgen C. Experimental violations of Bell’s inequalities. ETHZ, Zurich, 2010, Qudev.
  • [79] Helms L.L. Introduction to potential theory. New York: Wiley, 1969, p. 237f.
  • [80] Myrvold W., Genovese M. & Shimony A. Bell’s theorem. Stanford, Plato, 2019.
  • [81] Czajko J. Path-independence of work done theorem is invalid in center-bound force fields. Stud. Math. Sci. 7(2) (2013) 25-39
  • [82] Czajko J. Equipotential energy exchange depends on density of matter. Stud. Math. Sci. 7(2) (2013) 40-54
  • [83] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
  • [84] Czajko J. Equalized mass can explain the dark energy or missing mass problem as higher density of matter in stars amplifies their attraction. World Scientific News 80 (2017) 207-238
  • [85] Evans M. & Vigier J.-P. The enigmatic photon 2: Non-abelian electrodynamics. Dordrecht: Kluwer, 1995, pp. 44ff,68ff,107ff,123ff,130ff.
  • [86] Evans M. & Vigier J.-P. The enigmatic photon 1: The field B(3). Dordrecht: Kluwer, 1994, pp. 5ff,13,35,38,117ff.
  • [87] Evans M., Vigier J.-P., Roy S. & Jeffers S. The enigmatic photon 3: Theory and practice of the B(3) field. Dordrecht: Kluwer, 1996, p. 119ff.
  • [88] Van Hove M.A., O’Keefe M.A. & Marton L. Electron diffraction. [pp. 616-621 in: Lerner R.G. & Trigg G.L. (Eds.) Encyclopedia of physics: Vol. 1: A-L. Third, completely revised and enlarged edition. Weinheim: Wiley-VCH Verlag, 2005].
  • [89] Andrade e Silva J. & Lochak G. Quanta. New York: McGraw-Hill, 1969, p.118.
  • [90] De Broglie L. The current interpretation of wave mechanics. A critical study. Amsterdam: Elsevier, 1964, p. 7.
  • [91] Lochak G. The evolution of the ideas of Louis de Broglie on the interpretation of wave mechanics. [pp. 11-33 in: Barut A.O., Van der Merwe A. & Vigier J.-P. (Eds.) Quantum, space and time – the quest continues. Cambridge: Cambridge Univ. Press, 1983, see pp. 18f,24].
  • [92] French A.P. Special relativity. New York: W.W. Norton, 1968, p.17.
  • [93] Corinaldesi E. & Strocchi F. Relativistic wave mechanics. Amsterdam: North-Holland, 1963, pp. 5ff,296f.
  • [94] Weisstein, Eric W. Klein-Gordon Equation. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Klein-GordonEquation.html
  • [95] Katti A.N. The mathematical theory oof special and general relativity. North Charleston, SC: CreateSpace Independent Publishing, 2013, pp. 35,54.
  • [96] Lanciani P. A model of the electron in a 6-dimensional spacetime. Found. Phys. 29(2) (1999) 251-265
  • [97] Evans M.W. The Evans-Vigier field B(3) interpreted as a De Broglie pilot field. [pp. 241-254 in: Evans M.W. The enigmatic photon 5: O(3) electrodynamics. Dordrecht: Kluwer, 1999, see pp. 241,243].
  • [98] Recami E. & Evans M. Physical meaning of the photon’s wavefunction according to Ettore Majorana. [pp. 137-145 in: Evans M., Vigier J.-P., Roy S. & Hunter G. (Eds.) The enigmatic photon 4: New directions. Dordrecht: Kluwer, 1998, see p. 144].
  • [99] Evans M.W. The derivation of the Majorana form of Maxwell’s equations. [pp. 235-240 in: Evans M.W. The enigmatic photon 5: O(3) electrodynamics. Dordrecht: Kluwer, 1999, see pp. 238f].
  • [100] Holland P.R. The quantum theory of motion. An account of the de Broglie-Bohm causal interpretation of quantum mechanics. Cambridge: Cambridge Univ. Press, 1997, pp. 25, 26,89f.
  • [101] Barut A.O. The fallacy of the arguments against local realism in quantum phenomena. [pp. 9-18 in: Van der Merwe A. & Garuccio A. (Eds.) Waves and particles of light and matter. New York: Plenum Press, 1994, see p. 13f]
  • [102] De Broglie L. L’Oeuvre d’Einstein et la dualité des ondes et des corpuscules. Rev. Mod. Phys. 21(3) (1949) 345-347
  • [103] Kroemer H. Quantum mechanics for engineers, materials science and applied physics. Englewood Cliffs, NJ: Prentice-Hall, 1994, see Chapter 1.
  • [104] French A.P. Vibrations and waves. New Delhi: CBS Publishers, 2003, p. 209f,214.
  • [105] Bohm D. & Hiley B.J. The undivided universe. An ontological interpretation of quantum theory. London: Routledge, 1993, pp. 110,239.
  • [106] Do Carmo M.P. Differential geometry of curves and surfaces. Mineola, NY: Dover, 2016, pp. 451ff,331ff.
  • [107] Jones G.A. & Singerman D. Complex functions. An algebraic and geometric viewpoint. Cambridge: Cambridge Univ. Press, 1987, pp. 1ff,4ff.
  • [108] Paliouras J.D. & Meadows DS. Complex variables for scientists and engineers. Mineola, NY: Dover, 2014, p. 30f.
  • [109] Kumar D. Advanced calculus of several variables. New Delhi: Narosa Publishing, 2014, p.18.
  • [110] Bohm D. Wholeness and the implicate order. London: Routledge, 2002, pp. 109f,123ff.
  • [111] De Broglie L. Non-linear wave mechanics. A causal interpretation. Amsterdam: Elsevier, 1960, pp. 22ff, 24,89ff,99ff,209ff,216ff,220ff,263ff,273,291
  • [112] D'Espagnat B. Matière et réalité. [pp. 211-225 in: Collongues R. et al. La matière aujourd’hui. Paris: Éditions du Seuil, 1981, see p. 212].
  • [113] De Broglie L. An introduction to the study of wave mechanics. London: Methuen, 1930, p. 6f.
  • [114] De Broglie L. Matter and light. The new physics. Dover Publications; 1st English edition (January 1, 1939), p. 60ff.
  • [115] Gouesbet G. Hidden worlds in quantum physics. Mineola, NY: Dover, 2013, p. 141ff.
  • [116] Lochak G. De Broglie’s initial conception of de Broglie waves. [pp. 1-25 in: Diner S., Fargue D., Lochak G. & Selleri F. (Eds.) The wave-particle dualism. A tribute to Louis de Broglie on his 90th birthday. Dordrecht: Reidel, 1983, see p. 5].
  • [117] De Broglie L. La physique nouvelle et les quanta. Flammarion, 1992, p. 11.
  • [118] [118] De Broglie L. Introduction to the Vigier theory of elementary particles. Amsterdam: Elsevier, 1963, pp. 133,137.
  • [119] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
  • [120] D’Espagnat B. On physics and philosophy. Princeton, NJ: Princeton Univ. Press, 2006, p. 123f.
  • [121] Andersson M. Topics in complex analysis. New York: Springer, 1997, p. 8.
  • [122] O’Neil P.V. Advanced engineering mathematics. Pacific Grove, CA: Thompson, 2003, p. 1092ff.
  • [123] Watson G N. Complex integration & Cauchy’s theorem. Mineola, NY: Dover, 2012, pp. 31,46.
  • [124] Page A. Mathematical analysis and techniques II. Oxford: Oxford Univ. Press, 1974, p. 226.
  • [125] Weisstein, Eric W. Cauchy Integral Formula. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyIntegralFormula.html
  • [126] Okubo S. Introduction to octonion and other non-associative algebras in physics. Cambridge: Cambridge Univ. Press, 1995, pp. 2,11ff.
  • [127] Barr T.H. Vector calculus. Upper Saddle River, NJ: Prentice Hall, 1997, p. 434f.
  • [128] Story T.L. Introduction to differential geometry with applications to Navier-Stokes dynamics. New York: iUniverse, 2005, p. 14.
  • [129] Rodman L. Topics in quaternion linear algebra. Princeton, NJ: Princeton Univ. Press, 2014, pp. 9.36f.
  • [130] Hand L.N. & Finch J.D. Analytical mechanics. Cambridge: Cambridge Univ. Press, 1998, p. 99ff.
  • [131] Stover, Christopher. Green's Function. From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/GreensFunction.html
  • [132] Kirkwood J.R. Mathematical physics with partial differential equations. Waltham, MA: Academic Press, 2013, p. 390ff.
  • [133] Roach G.F. Green’s functions. Cambridge: Cambridge Univ. Press, 1982, pp. 36,2ff.
  • [134] Hayek S.I. Advanced mathematical methods in science and engineering. New York: Marcel Dekker, 2001, p. 456ff.
  • [135] Snider A.D. Partial differential equations. Sources and solutions. Mineola, NY: Dover, 2006, p. 42.
  • [136] Czajko J. Cantor and Generalized Continuum Hypotheses may be false. Chaos Solit. & Fract. 21 (2004) 501-512
  • [137] Euler L. Elements of algebra. New York: Springer, 1984, p. 22f.
  • [138] Czajko J. On unconventional division by zero. World Scientific News 99 (2018) 133-147
  • [139] Saitoh S. Zero expresses non-possibility. Vixra, 2019.
  • [140] Dieudonné J. Treatise on analysis II. New York: Academic Press, 1970, p. 151ff.
  • [141] Michiwaki H., Saitoh S. & Yamada M. Reality of the division by zero z/0=0. Int. J. Appl. Phys. Math. 6(1) (2016) 1-8
  • [142] Michiwaki H., Okumura H. & Saitoh S. Division by Zero z/0 = 0 in Euclidean Spaces. Int. J. Math. Computation, 28(1) (2017) 1-16
  • [143] Okumura H., Saitoh S. & Matsuura T. Relations of 0 and ∞. JTSS J. Tech. Soc. Sci. 1(1) (2017) 70-77 see p. 74.
  • [144] Matsuura T. & Saitoh S. Matrices and division by zero z/0=0. Adv. Lin. Alg. Matrix Theory 6 (2016) 51-58
  • [145] Okumura H. & Saitoh S. Wasan geometry and division by zero calculus. Sangaku J. Math. 2 (2018) 57-73
  • [146] Okumura H. & Saitoh S. The Descartes circles theorem and division by zero calculus. ResearchGate, 2017.
  • [147] Rogers R. Mathematical logic and formalized theories. Amsterdam: North-Holland, 1974, p. 39.
  • [148] Needham T. Visual Complex Analysis. Oxford: Clarendon Press, 2001, p.139ff.
  • [149] Sussman G.J. & Wisdom J. with Farr W. Functional differential geometry. Cambridge, MA: The MIT Press, 2013, p. 19.
  • [150] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
  • [151] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30
  • [152] Czajko J. Angular nonradial vs. usual radial potential energy quotient. Int. Lett. Chem. Phys. Astron 52 (2015) 172-177.
  • [153] Hardy A.S. Elements of quaternions. Boston, 1881, p. 61.
  • [154] Conway J.H. & Smith D.A. On quaternions and octonions: Their geometry, arithmetic, and symmetry. Wellesley, MA: A.K. Peters, 2003, p. 12.
  • [155] Wrede R.C. Introduction to vector and tensor analysis. New York: Dover, 1982, p. 3.
  • [156] Darboux G. Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Paris: Gauthier-Villars, 1941, p. 458.
  • [157] De Podesta M. Understanding the properties of matter. London: Taylor & Francis, 2002, p. 23.
  • [158] Kolata G. Topologists startled by new results. First a famous problem was solved, and now there is proof that there is more than one four-dimensional spacetime. Science 217 (1982) 432-433
  • [159] Saniga M. Quadro quartic Cremona transformations and four-dimensional pencil space-times with the reverse signature. Chaos Solit. Fract. 13 (2002) 797-805
  • [160] Priest G. An introduction of non-classical logic. Cambridge: Cambridge Univ. Press, 2001, p. 64ff.
  • [161] Hendricks V.F. The convergence of scientific knowledge. A view from the limit. Dordrecht: Kluwer, 2001, p. 92ff.
  • [162] Klawonn F. Fuzzy points, fuzzy relations and fuzzy functions. [pp. 431-453 in: Novák V. & Perfilieva I. (Eds.) Discovering the world with fuzzy logic. Heidelberg: Physica-Verlag, 2000].
  • [163] Russell B. The principles of mathematics. London: George Allen & Unwin, 1956, p. 194, pp. 259ff.
  • [164] Russell B. Introduction to mathematical philosophy. London: George Allen & Unwin, 1970, p. 117ff.
  • [165] Cusanus. De docta ignorantia. I.11.h 31 [in: Nikolaus von Kues. Philosophisch-theologische Werke. Lateinisch-Deutsch. Darmstadt: Wissenschaftiche Buchgesellschaft.
  • [166] Singh D. & Singh S.K. Pre-Robinson approach to the theory of infinitesimals. Int. J. Math. Ed. Sci. Techn. 23(2) (1992) 249-255
  • [167] Nicolaus von Kues. Die belehrte Unwissenheit I. Hamburg: Verlag von Felix Meiner, 1979, p.63.
  • [168] Von Cues N. Von Gottes sehen. Leipzig, 1944, p. 94.
  • [169] Gminder A. Ebene Geometrie. München, 1932, p. 115.
  • [170] Dray T. & Manogue C.A. The geometry of the octonions. Singapore: World Scientific, 2015, p. 177.
  • [171] Girard P.R. Quaternions, Clifford algebras and relativistic physics. Basel: Birkhäuser, 2007, pp. 50,69.
  • [172] McAulay A. Utility of quaternions in physics. London: Macmillan, 1893, p. 22.
  • [173] Lemmon W.W. Quaternion invariants of the Minkowski space. New Orleans, LA: Tulane Univ. Tech. Report, 1955, p. 12ff.
  • [174] McAulay A. Octonions a development of Clifford bi-quaternions. Cambridge: At the Univ. Press, 1898, p. 16ff.
  • [175] Furey C. Biquaternions and the Clifford algebra CL(2). Cambridge Univ. video 4/14 and subsequent chained videos.
  • [176] Morais J.P., Georgiev S. & Spröβig W. Real quaternionic calculus handbook. Basel: Springer, 2014, p. 5ff.
  • [177] Macfarlane A. Vector analysis and quaternions. New York: Wiley, 1906, p. 16ff.
  • [178] Yano K. Lie derivatives and its applications. Amsterdam: Noordhoff, pp. 9,13ff.
  • [179] Ślebodziński W. Formes extérieures et leurs applications II. Warszawa: PWN, 1963, p. 192.
  • [180] Hamilton W.R. Lectures on quaternions: containing a systematic statement of a new mathematical method… Dublin, 1853, see Lecture II § 44.
  • [181] Born M. Restless universe. New York: Dover, 1951, pp. 73, 139ff.
  • [182] Witten E. Reflections on the fate of spacetime. Phys. Today April 1996, 24-30
  • [183] Crowell L.B. Quantum fluctuations of spacetime. Singapore: World Scientific, 2006, pp. 243,308ff,339f.
  • [184] Oprea J. Differential geometry and its applications. Washington, DC: MAA, 2007, pp. 20ff,28ff,30.
  • [185] Kühnel W. Differential geometry. Curves – surfaces – manifolds. Providence, RI: AMS, 2005, pp. 26ff,30,52,239,348ff.
  • [186] Stoker J.J. Differential geometry. Delhi: Chaudhury, 2014, p. 63f.
  • [187] Loudon R. The quantum theory of light. Oxford: Oxford Univ. Press, 2004, p. 129.
  • [188] Anton H. Calculus. New horizon. New York: Wiley, 1999, p. 850ff.
  • [189] Ivey T.A. & Landsberg J.M. Cartan for beginners: Differential geometry via moving frames and exterior differential systems. Providence, RI: AMS, 2003, p. 25.
  • [190] Coxeter H.S.M. Introduction to geometry. New York: Wiley, 1962, p. 321f.
  • [191] Holm D.D., Schmah T. & Stoica C. Geometric mechanics and symmetry. From finite to infinite dimensions. Oxford: Oxford Univ. Press, 2009, p. 140.
  • [192] Coburn N. Vector and tensor analysis. New York: Dover, 1970, p. 64, p. 317ff.
  • [193] Holm D.D. Geometric mechanics part II: Rotating, translating and rolling. Singapore: World Scientific, 2008, p. 66.
  • [194] Pennisi L.L., Gordon L.I. & Lasher S. Elements of complex variables. New York: Holt, Rinehart and Winston, 1963, pp. 90,305f,308.
  • [195] Penrose R. The road to reality. A complete guide to the laws of the universe. New York: Alfred A. Knopf, 2005, pp. 500ff,505f.
  • [196] Thaller B. Visual quantum mechanics. New York: Springer, 2000, pp. 27,34,51ff,57.
  • [197] Ferrero M. & Santos E. The wave-particle duality and the Aharonov-Bohm effect. [pp. 29-36 in: Van der Merwe A. & Garuccio A. (Eds.) Waves and particles of light and matter. New York: Plenum Press, 1994, see p. 31].
  • [198] Mugur-Schächter M. p=h/λ? Whν? A riddle prior to any attempt at grand unification. [pp. 541-569 in: Van der Merwe A. & Garuccio A. (Eds.) Waves and particles of light and matter. New York: Plenum Press, 1994, see p. 542f].
  • [199] Hendricks V.F. The convergence of scientific knowledge. A view from the limit. Dordrecht: Kluwer, 2001, p. 83.
  • [200] Kroemer H. Quantum mechanics for engineers, materials science and applied physics. Englewood Cliffs, NJ: Prentice-Hall, 1994, p. 4.
  • [201] Bohm D. Causality and chance in modern physics. Princeton, NJ: Van Nostrand, 1957, pp. 83,84.
  • [202] De Broglie L. Matter and light. The new physics. New York: Dover, [no date], p. 267.
  • [203] Longair M.S. Theoretical concepts in physics. An alternative view of theoretical reasoning in physics. Cambridge: Cambridge Univ. Press, 2006, pp. 421, 422.
  • [204] Hadamard J. Four lectures on mathematics. New York: Columbia Univ. Press, 1915, pp. 4,5,8f,10.
  • [205] Shatah J. & Struwe M. Geometric wave equations. New York: Courant Institute, 1998, p. 82ff.
  • [206] Friedlander F.G. The wave equation on a curved space-time. Cambridge: Cambridge Univ. Press, 1975, p. 178ff.
  • [207] Synge J.L. Geometrical mechanics and De Broglie waves. Cambridge: Cambridge Univ. Press, 1954, pp. 64,105.
  • [208] Willmore T.J. An introduction to differential geometry. Mineola, NY: Dover, 2012, p. 137.
  • [209] Lanczos C. Linear differential operators. Mansfield Centre, CT: Martino Publishing, 2012, p. 336.
  • [210] Rindler W. Introduction to special relativity. Oxford: Clarendon Press, 1991, pp. 17,27.
  • [211] Harpaz A. Relativity theory. Concepts and basic principles. Boston: Jones and Bartlett, 1992, p. 60ff.
  • [212] Kleinerman S. Global existence for nonlinear wave equations. Commun. Pure Appl. Math. 33 (1980) 43-101
  • [213] John F. Nonexistence of global solutions of □u = F(utt) and of □v = F’(vt)vtt in three space dimensions. Proc. Nat. Acad. Sci. USA 77 (1980) 1759-1760.
  • [214] Hurley P. Time in the earlier and later Whitehead. [pp. 87-109 in: Griffin D.R. (Ed.) Physics and the ultimate significance of time. Albany, NY: State Univ. of New York Press, 1986].
  • [215] Cole E.A.B. Emission and absorption of tachyons in six-dimensional relativity. Phys. Lett. 75A (1979) 29-30.
  • [216] Cole E.A.B. Superluminal transformations using either complex space-time or real space-time symmetry. N. Cim. 40A(2) (1977) 171-180
  • [217] Henderson D.W. Differential geometry. A geometric introduction. Upper Saddle River, NJ: Prentice-Hall, 1998, p. 60.
  • [218] Weisstein, Eric W. Darboux Vector. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DarbouxVector.html
  • [219] Ertel H. Ein neuer hydrodynamischer Wirbelsatz. Met. Z. 59 (1942) 271-281
  • [220] Gibbon J.D. & Holm D.D. Lagrangian particle paths & ortho-normal quaternion frames. arXiv, 2007.
  • [221] Leithold L. The calculus with analytic geometry. Part II: Infinite series, vectors, and functions of several variables. New York: Harper & Row, Publishers, 1972, p. 791.
  • [222] Stein F.M. An introduction to vector analysis. New York: Harper & Row, 1963, p. 43f.
  • [223] Faber R.L. Differential geometry and relativity theory. An introduction. New York: Marcel Dekker, 1983, p. 146.
  • [224] Moon P. & Spencer D.E. Field theory handbook including coordinate systems, differential equations and their solutions. Berlin: Springer, 1971, pp. 3,136f.
  • [225] Weisstein, Eric W. Vector Laplacian. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/VectorLaplacian.html
  • [226] Misner C.W., Thorne K.S. & Wheeler J.A. Gravitation. New York: Freeman, 1973, pp. 393,1055.
  • [227] Czajko J. On the Hafele-Keating Experiment. Ann. Physik (Leipzig) 47 (1990) 517-518
  • [228] French A.P. Special relativity. New York: W.W. Norton, 1968, p. 25f.
  • [229] Lorentz H.A. The theory of electrons and its applications to the phenomena of light and radiant heat. New York: The Columbia Univ. Press, 1909, p. 225.
  • [230] Newton T.D. & Wigner E.P. Localized states for elementaary systems. Rev. Mod. Phys. 21(3) (1949) 400-406
  • [231] Fleming G.N. Nonlocal properties of stable particles. Phys. Rev. B 139 (1965) 963
  • [232] Ruijsenaars S.N.M. On Newton-Wigner localization and superluminal propagation speeds. Ann. Phys. 137 (1981) 33-43
  • [233] Silagadze Z.K. The Newton-Wigner position operator and the domain of validity of one-particle relativistic theory. CERN: SLAC Publ. (1993).
  • [234] Westra W. Localization of particles in quantum field theory. arXiv, 2010, see p.5f.
  • [235] Shirokov M.I. Packet spreading and Einstein retardation. Concepts Phys. 6(4) (2009) 543-552 and see references therein
  • [236] Hagerfeldt G.C. Comment on Packet Spreading and Einstein retardation. Concepts Phys. 6(4) (2009) 553-554.
  • [237] Thom R. To predict is not to explain. Thombooks Press, 2015, p. 85.
  • [238] ] Saitoh S. Division by zero functions in trigonometric functions. Vixra, 2019.
  • [239] Czajko J. On Conjugate Complex Time I: Complex Time Implies Existence of Tangential Potential that Can Cause Some Equipotential Effects of Gravity. Chaos, Solit. Fractals 11 (2000) 1983-1992
  • [240] Czajko J. Experiments with flying atomic clocks. Exper. Techn. Phys. 39 (1991) 145-147
  • [241] Czajko J. Operationally complete work done suggests presence of potentials corresponding to repulsive forces. Int. Lett. Chem. Phys. Astron. 37 (2014) 16-30
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-7365b48e-b67c-4d91-9f9d-93c429655ba5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.